【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)件,需另投入成本,當年產(chǎn)量不足80件時, (萬元),當年產(chǎn)量不少于80件時(萬元),每件商品售價50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關于年產(chǎn)量(件)的函數(shù)解析式;
(2)年產(chǎn)量為多少件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C:ρ=2 cos(θ﹣ ).
(Ⅰ) 求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ) 求曲線C上的點到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題p:關于x的方程x2+ax+2=0無實根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調遞增,若“p∧q”為假命題,“p∨q”真命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對任意實數(shù)均有,其中常數(shù)為負數(shù),且在區(qū)間上有表達式.
(1)寫出在上的表達式,并寫出函數(shù)在上的單調區(qū)間(不用過程,直接寫出即可);
(2)求出在上的最小值與最大值,并求出相應的自變量的取值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)2﹣ .
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個零點x1 , x2 , 證明x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學參加學校自主招生3門課程的考試,假設該同學第一門課程取得優(yōu)秀成績概率為 ,第二、第三門課程取得優(yōu)秀成績的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績相互獨立,記ξ為該生取得優(yōu)秀成績的課程數(shù),其分布列為
ξ | 0 | 1 | 2 | 3 |
p | x | y |
(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績的概率及求p,q的值;
(Ⅱ)求該生取得優(yōu)秀成績課程門數(shù)的數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),則下列結論正確的是__________.(寫出所有正確的編號)①的最小正周期為;②在區(qū)間上單調遞增;③取得最大值的的集合為 ④將的圖像向左平移個單位,得到一個奇函數(shù)的圖像
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】李莊村某社區(qū)電費收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收管理費2元,月用電不超過30度,每度0.4元,超過30度時,超過部分按每度0.5元.
方案二:不收管理費,每度0.48元.
(1)求方案一收費元與用電量(度)間的函數(shù)關系;
(2)小李家九月份按方案一交費34元,問小李家該月用電多少度?
(3)小李家月用電量在什么范圍時,選擇方案一比選擇方案二更好?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一副直角三角板(如圖1)拼接,將△BCD折起,得到三棱錐A﹣BCD(如圖2).
(1)若E,F(xiàn)分別為AB,BC的中點,求證:EF∥平面ACD;
(2)若平面ABC⊥平面BCD,求證:平面ABD⊥平面ACD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com