【題目】已知函數(shù)對(duì)任意實(shí)數(shù)均有,其中常數(shù)為負(fù)數(shù),且在區(qū)間上有表達(dá)式.
(1)寫出在上的表達(dá)式,并寫出函數(shù)在上的單調(diào)區(qū)間(不用過程,直接寫出即可);
(2)求出在上的最小值與最大值,并求出相應(yīng)的自變量的取值.
【答案】(1) , 和為增區(qū)間, 為減區(qū)間.
(2) , .
【解析】試題分析:(1)根據(jù)函數(shù)關(guān)系,可求得,根據(jù)函數(shù)的定義域可分四段得到函數(shù)的解析式;根據(jù)分段函數(shù)的圖像可求得函數(shù)的單調(diào)區(qū)間;(2)根據(jù)(1)函數(shù)的單調(diào)區(qū)間可知函數(shù)的最大值出自,最小值出自,再根據(jù)的范圍討論最后的最大值和最小值.
試題解析:解:∵,∴,
∴.
(1)當(dāng)時(shí), ,
,
當(dāng)時(shí), ,
,
當(dāng)時(shí), ,
,
綜上: 在上的表達(dá)式為,
由于,由在上的圖象,可得和為增區(qū)間, 為減區(qū)間.
(2)由(1)得的最小值出自, ,
的最大值出自, .
A.當(dāng)時(shí), , ,此時(shí), 最大值為,最小值為;
B.當(dāng)時(shí), , ,此時(shí)最大值為1,最小值為;
C.當(dāng)時(shí), , ;
此時(shí): , .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣1,1,2)、B(1,0,﹣1),設(shè)D在直線AB上,且 =2 ,設(shè)C(λ, +λ,1+λ),若CD⊥AB,則λ的值為( )
A.
B.﹣
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為奇函數(shù),為實(shí)常數(shù).
(1)求的值;
(2)證明:在區(qū)間內(nèi)單調(diào)遞增;
(3)若對(duì)于區(qū)間上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠擬建一個(gè)下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計(jì)厚度,單位:米),按計(jì)劃容積為72π立方米,且h≥2r,假設(shè)其建造費(fèi)用僅與表面積有關(guān)(圓柱底部不計(jì)),已知圓柱部分每平方米的費(fèi)用為2千元,半球部分每平方米4千元,設(shè)該容器的建造費(fèi)用為y千元.
(Ⅰ)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(Ⅱ)求建造費(fèi)用最小時(shí)的r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)件,需另投入成本,當(dāng)年產(chǎn)量不足80件時(shí), (萬元),當(dāng)年產(chǎn)量不少于80件時(shí)(萬元),每件商品售價(jià)50萬元,通過市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(件)的函數(shù)解析式;
(2)年產(chǎn)量為多少件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的四邊形ABCD,已知 =(6,1), =(x,y), =(﹣2,﹣3)
(1)若 且﹣2≤x<1,求函數(shù)y=f(x)的值域;
(2)若 且 ,求x,y的值及四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣ sinxcosx+ ,g(x)=mcos(x+ )﹣m+2
(1)若對(duì)任意的x1 , x2∈[0,π],均有f(x1)≥g(x2),求m的取值范圍;
(2)若對(duì)任意的x∈[0,π],均有f(x)≥g(x),求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com