13.己知直線2x+y-8=0與直線x-2y+1=0交于點(diǎn)P.
(1)求過點(diǎn)P且平行于直線4x-3y-7=0的直線11的方程;(結(jié)果都寫成一般方程形式)
(2)求過點(diǎn)P的所有直線中使原點(diǎn)O到此直線的距離最大的直線12的方程.

分析 (1)先求出直線2x+y-8=0與直線x-2y+1=0的交點(diǎn)P,再由直線與直線平行的關(guān)系能求出過點(diǎn)P且平行于直線4x-3y-7=0的直線11的方程.
(2)當(dāng)OP⊥l2時(shí),原點(diǎn)O到此直線的距離最大,由此能求出直線l2的方程.

解答 解:(1)由$\left\{\begin{array}{l}{2x+y-8=0}\\{x-2y+1=0}\end{array}\right.$,解得x=3,y=2,
∴直線2x+y-8=0與直線x-2y+1=0的交點(diǎn)P(3,2),
∵過點(diǎn)P且平行于直線4x-3y-7=0的直線11的斜率k1=$\frac{4}{3}$,
∴直線l1的方程為y-2=$\frac{4}{3}$(x-3),
∴過點(diǎn)P且平行于直線4x-3y-7=0的直線11的方程為4x-3y-6=0.
(2)當(dāng)OP⊥l2時(shí),原點(diǎn)O到此直線的距離最大,
又kOP=$\frac{2}{3}$時(shí),則直線l2的斜率k2=-$\frac{3}{2}$,
∴直線l2的方程為y-2=-$\frac{3}{2}$(x-3),即3x+2y-13=0.

點(diǎn)評(píng) 本題考查直線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線與直線平行、直線與直線垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=f(x)在區(qū)間[1,2]上單調(diào)遞增,且滿足f(1)-f(2)<0,則f(x)在(1,2)上( 。
A.有一個(gè)零點(diǎn)B.有兩個(gè)零點(diǎn)C.可能沒有零點(diǎn)D.以上說法不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將函數(shù)y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個(gè)單位后,得到函數(shù)y=cos($\frac{π}{2}$-2x)的圖象,則函數(shù)y=sin(ωx+φ)的對(duì)稱中心為( 。
A.(-$\frac{5π}{6}$,0)B.($\frac{π}{3}$,0)C.($\frac{π}{6}$,0)D.(-$\frac{π}{3}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=$\frac{3}{2}$x-1,如果y<0,則x的取值范圍是(-∞,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,滿足$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,|$\overrightarrow{c}$|=4,求$\overrightarrow{a}$與$\overrightarrow$的余弦值以及|$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$\overrightarrow{m}$=(a,2),$\overrightarrow{n}$=(1,b-1),a>0,b>0,若$\overrightarrow{m}$,$\overrightarrow{n}$的夾角為$\frac{π}{2}$,則$\frac{1}{a}$+$\frac{2}$的最小值是( 。
A.無法確定B.3C.$\frac{5}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正方形的中心G(2,1),正方形有一邊所在直線方程是l:x-y+1=0,求其它三邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果$\frac{sinα-cosα}{3sinα+cosα}$=$\frac{1}{7}$,那么tanα=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.記$a=\frac{1}{e}-ln\frac{1}{e}$,$b=\frac{1}{2e}-ln\frac{1}{2e}$,$c=\frac{2}{e}-ln\frac{2}{e}$,其中e為自然對(duì)數(shù)的底數(shù),則a,b,c這三個(gè)數(shù)的大小關(guān)系是( 。
A.a>b>cB.a<b<cC.b>c>aD.b>a>c

查看答案和解析>>

同步練習(xí)冊(cè)答案