函數(shù)y=log2(-x2-2x+3)的單調(diào)增區(qū)間是
 
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出函數(shù)的定義域,得到定義域內(nèi)內(nèi)層二次函數(shù)的增區(qū)間得答案.
解答: 解:由-x2-2x+3>0,得-3<x<1.
由函數(shù)t=-x2-2x+3對稱軸為x=-1,
得函數(shù)t=-x2-2x+3在定義域內(nèi)的增區(qū)間為(-3,-1).
故答案為:(-3,-1).
點評:本題考查復(fù)合函數(shù)的單調(diào)性,復(fù)合的兩個函數(shù)同增則增,同減則減,一增一減則減,注意對數(shù)函數(shù)的定義域是求解的前提,考查學(xué)生發(fā)現(xiàn)問題解決問題的能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x-1
(x≥1)
x(x<1)
,則f(f(2))=( 。
A、-1B、0C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(0,
π
2
)上的函數(shù)y=2(sinx+1)與y=
8
3
的圖象相交于點P,過點P作PP1⊥x軸于P1,直線PP1與y=tanx的圖象交于點P2,則線段P1P2的長度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由“不超過x的最大整數(shù)”這一關(guān)系所確定的函數(shù)稱為取整函數(shù),通常記為y=[x],例如[1.2]=1,[-0.3]=-1.則函數(shù)y=2[x]+1,x∈[-1,3)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin(x+
π
4
)cos(x+
π
4
)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=loga(x2+
3
2
x),(a>0,a≠1)在區(qū)間(
1
2
,+∞)內(nèi)恒有f(x)<0,則f(x)的單調(diào)遞減區(qū)間是( 。
A、(-∞,-
3
4
B、(-∞,-
3
2
C、(-
3
4
,+∞)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3x2-2x的單減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x-1
+
1-x
是( 。
A、.偶函數(shù)B、奇函數(shù)
C、即奇又偶函數(shù)D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-2x+a
2x+1
是定義域R上的奇函數(shù),其中a為實數(shù).
(1)求a的值;     
(2)證明f(x)是R上的減函數(shù);
(3)若不等式f(logm
3
4
)+f(-1)>0
恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案