分析 利用余弦定理求得b,再利用正弦定理求得sinA和sinC的值,可得sinA+sinC的值.
解答 解:△ABC中,∵∠B=120°,a=3,c=5,∴A+C=60°,
∴b2=a2+c2-2ac•cosB=9+25-30•(-$\frac{1}{2}$)=49,∴b=7.
又$\frac{3}{sinA}$=$\frac{7}{sin120°}$=$\frac{5}{sinC}$,∴sinA=$\frac{3\sqrt{3}}{14}$,sinC=$\frac{5\sqrt{3}}{14}$,∴sinA+sinC=$\frac{4\sqrt{3}}{7}$,
故答案為:$\frac{4\sqrt{3}}{7}$.
點評 本題主要考查正弦定理、余弦定理的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x-2y+2=0 | B. | 2x+y-6=0 | C. | x+2y-2=0 | D. | 2x-y+6=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=f(x)的最小正周期為π,且在(0,$\frac{π}{2}$)上為增函數(shù) | |
B. | y=f(x)的最小正周期為π,且在(0,$\frac{π}{2}$)上為減函數(shù) | |
C. | y=f(x)的最小正周期為$\frac{π}{2}$,且在(0,$\frac{π}{4}$)上為增函數(shù) | |
D. | y=f(x)的最小正周期為$\frac{π}{2}$,且在(0,$\frac{π}{4}$)上為減函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com