【題目】已知函數(shù)
(1)若函數(shù)在處取得極值1,證明:
(2)若恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)證明見(jiàn)詳解;(2)
【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;
(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導(dǎo)函數(shù),再構(gòu)造函數(shù),進(jìn)行二次求導(dǎo).由知,則在上單調(diào)遞增.根據(jù)零點(diǎn)存在定理可知有唯一零點(diǎn),且.由此判斷出時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,則,即.由得,再次構(gòu)造函數(shù),求導(dǎo)分析單調(diào)性,從而得,即,最終求得,則.
解:(1)由題知,
∵函數(shù)在,處取得極值1,
,且,
,
,
令,則
為增函數(shù),
,即成立.
(2)不等式恒成立,
即不等式恒成立,即恒成立,
令,則
令,則,
,,
在上單調(diào)遞增,且,
有唯一零點(diǎn),且,
當(dāng)時(shí),,,單調(diào)遞減;
當(dāng)時(shí),,,單調(diào)遞增.
,
由整理得
,
令,則方程等價(jià)于
而在上恒大于零,
在上單調(diào)遞增,
.
,
∴實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為1的正三角形,點(diǎn)P在所在的平面內(nèi),且(a為常數(shù)),下列結(jié)論中正確的是( )
A.當(dāng)時(shí),滿(mǎn)足條件的點(diǎn)P有且只有一個(gè)
B.當(dāng)時(shí),滿(mǎn)足條件的點(diǎn)P有三個(gè)
C.當(dāng)時(shí),滿(mǎn)足條件的點(diǎn)P有無(wú)數(shù)個(gè)
D.當(dāng)a為任意正實(shí)數(shù)時(shí),滿(mǎn)足條件的點(diǎn)總是有限個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子設(shè)備工廠生產(chǎn)一種電子元件,質(zhì)量控制工程師要在產(chǎn)品出廠前將次品檢出.估計(jì)這個(gè)廠生產(chǎn)的電子元件的次品率為0.2%,且電子元件是否為次品相互獨(dú)立,一般的檢測(cè)流程是:先把個(gè)電子元件串聯(lián)起來(lái)成組進(jìn)行檢驗(yàn),若檢測(cè)通過(guò),則全部為正品;若檢測(cè)不通過(guò),則至少有一個(gè)次品,再逐一檢測(cè),直到把所有的次品找出,若檢驗(yàn)一個(gè)電子元件的花費(fèi)為5分錢(qián),檢驗(yàn)一組(個(gè))電子元件的花費(fèi)為分錢(qián).
(1)當(dāng)時(shí),估算一組待檢元件中有次品的概率;
(2)設(shè)每個(gè)電子元件檢測(cè)費(fèi)用的期望為,求的表達(dá)式;
(3)試估計(jì)的值,使每個(gè)電子元件的檢測(cè)費(fèi)用的期望最小.(提示:用進(jìn)行估算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,側(cè)面是菱形,其對(duì)角線(xiàn)的交點(diǎn)為,且,.
(1)求證:平面;
(2)設(shè),若直線(xiàn)與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《易經(jīng)》是中國(guó)傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線(xiàn)組成(""表示一根陽(yáng)線(xiàn),""表示一根陰線(xiàn)),從八卦中任取兩卦,這兩卦的六根線(xiàn)中恰有兩根陽(yáng)線(xiàn),四根陰線(xiàn)的概率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四面體的棱長(zhǎng)滿(mǎn)足,,現(xiàn)將四面體放入一個(gè)主視圖為等邊三角形的圓錐中,使得四面體可以在圓錐中任意轉(zhuǎn)動(dòng),則圓錐側(cè)面積的最小值為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的空間幾何體中,四邊形為直角梯形,,,,且平面平面,為棱中點(diǎn).
(1)證明:;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)x3x2﹣2x(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)的單調(diào)遞減區(qū)間;
(2)若對(duì)于任意x∈都有成立,求實(shí)數(shù)a的取值范圍;
(3)若過(guò)點(diǎn)可作函數(shù)圖象的三條不同切線(xiàn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若函數(shù)是R上的增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)討論函數(shù)在上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com