分析 先確定圓心和半徑,然后利用圓中的垂徑定理求得圓心到直線的距離,從而建立關(guān)于a的方程,即可求得a的值.
解答 解:圓(x-1)2+(y-2)2=4的圓心C(1,2),半徑r=2
弦AB的中點為D,則|AD|=$\sqrt{3}$,由圓的性質(zhì)得圓心到直線的距離d=1,
∴C到直線的距離為$\frac{|a-2+3|}{\sqrt{{a}^{2}+1}}$=1
即|a+1|=$\sqrt{{a}^{2}+1}$,
平方得a2+2a+1=a2+1,
即2a=0,
解得:a=0,
故答案為:0.
點評 本題考查了直線與圓相交的性質(zhì),注意圓中的直角三角形的應(yīng)用,避免聯(lián)立直線與圓的方程,利用半徑,半弦,圓心距之間的關(guān)系是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\sqrt{2}$+1) | B. | (1,$\sqrt{3}$) | C. | ($\sqrt{3}$,+∞) | D. | ($\sqrt{2}$+1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin2x | B. | y=-|x+1| | C. | y=ln$\frac{2+x}{2-x}$ | D. | y=$\frac{{a}^{x}+{a}^{-x}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com