四邊形ABCD的四個頂點都在拋物線上,A,C關于軸對稱,BD平行于拋物線在點C處的切線。
(Ⅰ)證明:AC平分;
(Ⅱ)若點A坐標為,四邊形ABCD的面積為4,求直線BD的方程。

(Ⅰ)詳見解析;(Ⅱ)y=2x

解析試題分析:(Ⅰ)依題意設出A、B、C、D四點的坐標,注意到AC的斜率為0,只需證AB、AD的斜率之和為0即可;(Ⅱ)四邊形ABCD可以AC為底分成兩個三角形求出面積,解出得到的方程即可.
試題解析:(Ⅰ)設A(x0,),B(x1,),C(-x0,),D(x2,).
對y=x2求導,得y¢=2x,則拋物線在點C處的切線斜率為-2x0
直線BD的斜率k==x1+x2
依題意,有x1+x2=-2x0.     
記直線AB,AD的斜率分別為k1,k2,與BD的斜率求法同理,得
k1+k2=(x0+x1)+(x0+x2)=2x0+(x1+x2)=0,
所以∠CAB=∠CAD,即AC平分∠BAD.   
(Ⅱ)由題設,x0=-1,x1+x2=2,k=2.四邊形ABCD的面積
S=|AC|·|AC|·|x2+x1|·|x2-x1|
×2×2×|2-2x1|=4|1-x1|,
由已知,4|1-x1|=4,得x1=0,或x1=2.
所以點B和D的坐標為(0,0)和(2,4),
故直線BD的方程為y=2x.

考點:1、拋物線及切線;2、直線的斜率及應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知動點到定點的距離之和為.
(Ⅰ)求動點軌跡的方程;
(Ⅱ)設,過點作直線,交橢圓異于兩點,直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的離心率等于,點P在橢圓上。
(1)求橢圓的方程;
(2)設橢圓的左右頂點分別為,過點的動直線與橢圓相交于兩點,是否存在定直線,使得的交點總在直線上?若存在,求出一個滿足條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),).
(Ⅰ)化曲線的極坐標方程為直角坐標方程;
(Ⅱ)若直線經過點,求直線被曲線截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,為橢圓的兩個焦點,點在橢圓上,且的周長為
(Ⅰ)求橢圓的方程
(Ⅱ)設直線與橢圓相交于、兩點,若為坐標原點),求證:直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的離心率,是其左右焦點,點是直線(其中)上一點,且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點,滿足,求為坐標原點)面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線兩不同點,交軸于點,已知,求的值;
(3)直線交橢圓兩不同點,軸的射影分別為,,若點滿足,證明:點在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為F2,點F1與F2關于坐標原點對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點P、Q且.
(1)求點T的橫坐標
(2)若以F1,F2為焦點的橢圓C過點.
①求橢圓C的標準方程;
②過點F2作直線l與橢圓C交于A,B兩點,求的取值范圍.

查看答案和解析>>

同步練習冊答案