已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(2)過點的直線交拋物線于兩不同點,交軸于點,已知,求的值;
(3)直線交橢圓于兩不同點,在軸的射影分別為,,若點滿足,證明:點在橢圓上.
(1) ,;(2)-1;(3)詳見解析.
解析試題分析:(1)根據(jù)拋物線的焦點坐標(biāo)滿足圓的方程確定等量關(guān)系,求解拋物線方程;根據(jù)橢圓的焦點和右定點也在圓上,確定橢圓方程;(2)利用已知的向量關(guān)系式進(jìn)行坐標(biāo)轉(zhuǎn)化求出,然后通過直線與拋物線方程聯(lián)立,借助韋達(dá)定理進(jìn)行化簡并求值;(3)借助向量問題坐標(biāo)化和點在橢圓上,明確點S的坐標(biāo),進(jìn)而證明其在橢圓上.
試題解析:(1)由拋物線的焦點在圓上得:,
∴拋物線 . 2分
同理由橢圓的上、下焦點及左、右頂點均在
上可解得:.
得橢圓. 4分
(2)設(shè)直線的方程為,則.
聯(lián)立方程組,消去得:
且 5分
由得:
整理得:
. 8分
(3)設(shè),則
由得;① ;②
;③ 11分
由①+②+③得
∴滿足橢圓的方程,命題得證. 13分
考點:1.拋物線和橢圓的方程;(2)直線與拋物線的位置關(guān)系;(3)向量的坐標(biāo)運算.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,
(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當(dāng)點運動時,以為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四邊形ABCD的四個頂點都在拋物線上,A,C關(guān)于軸對稱,BD平行于拋物線在點C處的切線。
(Ⅰ)證明:AC平分;
(Ⅱ)若點A坐標(biāo)為,四邊形ABCD的面積為4,求直線BD的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個焦點分別為,且,點在橢圓上,且的周長為6.
(I)求橢圓的方程;
(II)若點的坐標(biāo)為,不過原點的直線與橢圓相交于兩點,設(shè)線段的中點為,點到直線的距離為,且三點共線.求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、是橢圓的左、右焦點,且離心率,點為橢圓上的一個動點,的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個點,滿足向量與共線,與共
線,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,設(shè)拋物線的焦點為,且其準(zhǔn)線與軸交于,以,為焦點,離心率的橢圓與拋物線在軸上方的一個交點為P.
(1)當(dāng)時,求橢圓的方程;
(2)是否存在實數(shù),使得的三條邊的邊長是連續(xù)的自然數(shù)?若存在,求出這樣的實數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(a>b>0)拋物線,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:
4 | 1 | |||
2 | 4 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個頂點為A(0,-1),焦點在x軸上.若右焦點到直線的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線相交于不同的兩點M、N.當(dāng)時,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com