【題目】函數(shù),則下列結(jié)論中不正確的是(

A.曲線存在對(duì)稱中心B.曲線存在對(duì)稱軸

C.函數(shù)的最大值為D.

【答案】A

【解析】

求得函數(shù)的對(duì)稱軸、最值來判斷BC選項(xiàng)的正確選,利用放縮法判斷D選項(xiàng)的正確性,利用反證法判斷A選項(xiàng)的結(jié)論錯(cuò)誤.

,故曲線關(guān)于對(duì)稱,故B正確;

由于,

當(dāng)時(shí),分母取得最小值2,此時(shí)分子剛好取得最大值1,故函數(shù)的最大值為,故C正確.

畫出的圖像如下圖所示,由圖可知.

所以,故D正確.

由于,所以不是奇函數(shù),圖像不關(guān)于原點(diǎn)對(duì)稱.而,所以原點(diǎn)在函數(shù)圖像上.

假設(shè)A選項(xiàng)正確,即存在點(diǎn)為常數(shù))是的對(duì)稱中心,由上述分析可知不是原點(diǎn).則原點(diǎn)關(guān)于的對(duì)稱點(diǎn)為

①,

由于,所以在函數(shù)圖像上,關(guān)于的對(duì)稱點(diǎn)為,

②,

由①②得

,

其判別式,方程無解.

故不存在的對(duì)稱中心,所以A選項(xiàng)錯(cuò)誤.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),若對(duì)任意均有成立,求實(shí)數(shù)的取值范圍;

2)設(shè)直線與曲線和曲線相切,切點(diǎn)分別為,,其中.

①求證:;

②當(dāng)時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間和極值點(diǎn);

2)若單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了了解該市教師年齡分布情況,對(duì)年齡在內(nèi)的5000名教師進(jìn)行了抽樣統(tǒng)計(jì),根據(jù)分層抽樣的結(jié)果,統(tǒng)計(jì)員制作了如下的統(tǒng)計(jì)表格:

年齡區(qū)間

教師人數(shù)

2000

1300

樣本人數(shù)

130

由于不小心,表格中部分?jǐn)?shù)據(jù)被污染,看不清了,統(tǒng)計(jì)員只記得年齡在的樣本人數(shù)比年齡在的樣本人數(shù)多10,根據(jù)以上信息回答下列問題:

1)求該市年齡在的教師人數(shù);

2)試根據(jù)上表做出該市教師按照年齡的人數(shù)頻率分布直方圖,并求該市教師年齡的平均數(shù)及方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,平行四邊形中,,,中點(diǎn).將沿折起,使平面平面,得到如圖②所示的四棱錐.

1)求證:平面平面

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長(zhǎng)為2的正方形.平面,且

1)求證:平面平面

2)線段上是否存在一點(diǎn),使三棱錐的高若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線由左半橢圓和圓軸右側(cè)的部分連接而成, , 的公共點(diǎn),點(diǎn), (均異于點(diǎn) )分別是, 上的動(dòng)點(diǎn).

Ⅰ)若的最大值為,求半橢圓的方程;

Ⅱ)若直線過點(diǎn),且 ,求半橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):

已知三類工種職工每人每年保費(fèi)分別為25元、25元、40元,出險(xiǎn)后的賠償金額分別為100萬元、100萬元、50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.

(1)求保險(xiǎn)公司在該業(yè)務(wù)所或利潤(rùn)的期望值;

(2)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:

方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),出意外企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項(xiàng)工作的固定支出為每年12萬元;

方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無額外專項(xiàng)開支.

請(qǐng)根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)求過點(diǎn)的切線方程;

(2)當(dāng)時(shí),求函數(shù)的最大值;

(3)證明:當(dāng)時(shí),不等式對(duì)任意均成立(其中為自然對(duì)數(shù)的底數(shù), ).

查看答案和解析>>

同步練習(xí)冊(cè)答案