【題目】如圖,曲線由左半橢圓和圓在軸右側的部分連接而成, , 是與的公共點,點, (均異于點, )分別是, 上的動點.
(Ⅰ)若的最大值為,求半橢圓的方程;
(Ⅱ)若直線過點,且, ,求半橢圓的離心率.
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過長期觀察得到:在交通繁忙的時段內(nèi),某公路汽車的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間的函數(shù)關系為
(1)在該時段內(nèi),當汽車的平均速度為多少時,車流量最大,最大車流量為多少?(精確到0.1千輛/小時)
(2)若要求在該時段內(nèi)車流量超過10千輛/小時,則汽車的平均速度應在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當時,求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若時,關于的不等式恒成立,求實數(shù)的取值范圍;
(Ⅲ)若數(shù)列滿足, ,記的前項和為,求證: .
【答案】(I);(II);(III)證明見解析.
【解析】試題分析:(Ⅰ)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)當時,因為,所以顯然不成立,先證明因此時, 在上恒成立,再證明當時不滿足題意,從而可得結果;(III)先求出等差數(shù)列的前項和為,結合(II)可得,各式相加即可得結論.
試題解析:(Ⅰ)由,得.所以
令,解得或(舍去),所以函數(shù)的單調(diào)遞減區(qū)間為 .
(Ⅱ)由得,
當時,因為,所以顯然不成立,因此.
令,則,令,得.
當時, , ,∴,所以,即有.
因此時, 在上恒成立.
②當時, , 在上為減函數(shù),在上為增函數(shù),
∴,不滿足題意.
綜上,不等式在上恒成立時,實數(shù)的取值范圍是.
(III)證明:由知數(shù)列是的等差數(shù)列,所以
所以
由(Ⅱ)得, 在上恒成立.
所以. 將以上各式左右兩邊分別相加,得
.因為
所以
所以.
【題型】解答題
【結束】
22
【題目】已知直線, (為參數(shù), 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的直角坐標方程為.
(Ⅰ)將曲線的直角坐標方程化為極坐標方程;
(Ⅱ)設點的直角坐標為,直線與曲線的交點為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年中央電視臺春節(jié)聯(lián)歡晚會分會場之一落戶黔東南州黎平縣肇興侗寨,黔東南州某中學高二社會實踐小組就社區(qū)群眾春晚節(jié)目的關注度進行了調(diào)查,隨機抽取80名群眾進行調(diào)查,將他們的年齡分成6段: ,,,, , ,得到如圖所示的頻率分布直方圖.問:
(Ⅰ)求這80名群眾年齡的中位數(shù);
(Ⅱ)若用分層抽樣的方法從年齡在中的群眾隨機抽取6名,并從這6名群眾中選派3人外出宣傳黔東南,求選派的3名群眾年齡在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點,點是單位圓與軸的正半軸的交點.
(1)若,求.
(2)已知,,若是等邊三角形,求的面積.
(3)設點為單位圓上的動點,點滿足,,,求的取值范圍.當時,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標方程;
(2)若曲線截直線所得線段的中點坐標為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在邊長為8的正三角形ABC中,E,F依次是AB,AC的中點,,D,H,G為垂足,若將繞AD旋轉(zhuǎn),求陰影部分形成的幾何體的表面積與體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線經(jīng)過點.
(1)若原點到直線的距離為2,求直線的方程;
(2)若直線被兩條相交直線和所截得的線段恰被點平分,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com