17.已知a=log23,b=log32,c=log0.52,那么( 。
A.a<b<cB.a<c<bC.c<b<aD.b<c<a

分析 利用對(duì)數(shù)性質(zhì),判斷三個(gè)數(shù)的范圍,即可得到結(jié)果.

解答 解:a=log23>1,b=log32∈(0,1),c=log0.52<0,
可得c<b<a.
故選:C.

點(diǎn)評(píng) 本題考查對(duì)數(shù)值的大小比較,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知拋物線C:y2=4x,其焦點(diǎn)為F,定點(diǎn)E(1,2).
(1)過(guò)點(diǎn)G(5,-2)的直線與拋物線C交于M,N兩點(diǎn)(不同于點(diǎn)E),記直線EM,EN的斜率分別為k1,k2,求k1•k2;
(2)設(shè)Q為拋物線C的準(zhǔn)線上一點(diǎn),是否存在過(guò)焦點(diǎn)F的直線l與拋物線C交于不同的兩點(diǎn)A,B,使得△ABQ為正三角形?若能,求出直線l的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知向量|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=$\sqrt{6}$,若$\overrightarrow{a}$,$\overrightarrow$間的夾角為$\frac{3π}{4}$,則|4$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.$\sqrt{57}$B.$\sqrt{61}$C.$\sqrt{78}$D.$\sqrt{85}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是正方形,且PA=AD=2,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(1)求證:EF∥平面PAB;
(2)求證:EF⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知α、β是兩個(gè)不同的平面,m、n是兩條不同的直線,下列命題中正確的是( 。
A.若α∥β,m⊥n,m⊥α,則n∥βB.若α⊥β,m∥n,m⊥β,則n?α
C.若n⊥α,m⊥α,則m∥nD.若α⊥β,n∥α,m⊥β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知復(fù)數(shù)z=$\frac{10-5ai}{1-2i}$的實(shí)部與虛部之和為4,則復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知全集U={1,2,3,4,5},集合M={1,2,3},N={3,4,5},則集合{1,2}可以表示為( 。
A.M∩NB.(∁UM)∩NC.M∩(∁UN)D.(∁UM)∩(∁UN)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{5}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知點(diǎn)M(1,0)及雙曲線$\frac{{x}^{2}}{3}$-y2=1的右支上兩動(dòng)點(diǎn)A,B,當(dāng)∠AMB最大時(shí),它的余弦值為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案