17.若tanα=$\frac{4}{3}$,則cos2α+sin2α=$\frac{33}{25}$.

分析 利用同角三角函數(shù)基本關(guān)系式化簡(jiǎn)所求的表達(dá)式為正切函數(shù)的形式,求解即可.

解答 解:tanα=$\frac{4}{3}$,則cos2α+sin2α=$\frac{{cos}^{2}α+2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{1+2tanα}{ta{n}^{2}α+1}$=$\frac{1+2×\frac{4}{3}}{\frac{16}{9}+1}$=$\frac{33}{25}$.
故答案為:$\frac{33}{25}$.

點(diǎn)評(píng) 本題考查三角函數(shù)化簡(jiǎn)求值,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若關(guān)于x的不等式lnx>ax-1的解集為{x|x>2},則不等式lnx<1-$\frac{a}{x}$的解集為( 。
A.{x|x>2}B.{x|0<x<2}C.{x|x>$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)a∈R,函數(shù)f(x)=lnx-ax.
(I) 求f(x)的單調(diào)增區(qū)間;
(Ⅱ)設(shè)F(x)=f(x)+ax2+ax,問(wèn)F(x)是否存在極值,若存在,請(qǐng)求出極值;若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知z1=sinθ-$\frac{4}{5}$i,z2=$\frac{3}{5}$-cosθi,若z1-z2是純虛數(shù),則tanθ=( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)y=$\frac{1}{{{2^{{x^2}+2x+2}}}}$.
(1)求函數(shù)的定義域和值域;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.淮南二中體育教研組為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)本校200名高二學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間(分鐘)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
總?cè)藬?shù)203644504010
將學(xué)生日均課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo)課外體育達(dá)標(biāo)合計(jì)
15110
合計(jì)
(2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的:“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(1-3a)x+10a(x≤6)}\\{{a}^{x-7}(x>6)}\end{array}\right.$,若數(shù)列{an}滿足an=f(n)(n∈N*),且{an}是遞減數(shù)列,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{1}{3}$,1)B.($\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{3}$,$\frac{5}{8}$)D.($\frac{5}{8}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.60°角的弧度數(shù)是( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在一次英語(yǔ)考試中,考試的成績(jī)服從正態(tài)分布(100,36),那么考試成績(jī)?cè)趨^(qū)間(88,112]內(nèi)的概率是( 。
A.0.6826B.0.3174C.0.9544D.0.9974

查看答案和解析>>

同步練習(xí)冊(cè)答案