1.已知函數(shù)f(x)=$\frac{4}{|x|+2}$-1的定義域是[a,b](a,b為整數(shù)),值域是[0,1],請(qǐng)?jiān)诤竺娴南聞澗(xiàn)上寫(xiě)出所有滿(mǎn)足條件的整數(shù)數(shù)對(duì)(a,b)(-2,0),(-2,1),(-2,2),(-1,2),(0,2).

分析 根據(jù)函數(shù)的值域先求出滿(mǎn)足條件的條件x,結(jié)合函數(shù)的定義域進(jìn)行求解即可.

解答 解:由f(x)=$\frac{4}{|x|+2}$-1=0得$\frac{4}{|x|+2}$=1,得|x|+2=4,即|x|=2,得x=2或-2,
由f(x)=$\frac{4}{|x|+2}$-1=1得$\frac{4}{|x|+2}$=2,得|x|+2=2,即|x|=0,得x=0,
則定義域?yàn)榭赡転閇-2,0],[-2,1],[-2,2],[-1,2],[0,2],
則滿(mǎn)足條件的整數(shù)數(shù)對(duì)(a,b)為(-2,0),(-2,1),(-2,2),(-1,2),(0,2),
故答案為:(-2,0),(-2,1),(-2,2),(-1,2),(0,2),

點(diǎn)評(píng) 本題主要考查函數(shù)定義域和值域的應(yīng)用,根據(jù)條件求出函數(shù)值對(duì)應(yīng)的x是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,AD∥BC,且BC=2AD,AD⊥CD,PB⊥CD,點(diǎn)E在棱PD上,且PE=2ED.
(1)求證:平面PCD⊥平面PBC;
(2)求證:PB∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn=2an-a1,且a3,a2+1,a1成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}}$+2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知圓C:(x-1)2+y2=r2(r>0)與直線(xiàn)l:y=x+3,且直線(xiàn)l有唯一的一個(gè)點(diǎn)P,使得過(guò)P點(diǎn)作圓C的兩條切線(xiàn)互相垂直,則r=2;設(shè)EF是直線(xiàn)l上的一條線(xiàn)段,若對(duì)于圓C上的任意一點(diǎn)Q,∠EQF≥$\frac{π}{2}$,則|EF|的最小值=4$\sqrt{2}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知x,y滿(mǎn)足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,若不等式ax-y≥1恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.$[{\frac{27}{5},+∞})$B.$[{\frac{11}{5},+∞})$C.$[{\frac{3}{5},+∞})$D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率:先由計(jì)算器給出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2表示沒(méi)有擊中目標(biāo),3、4、5、6、7、8、9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為( 。
A.0.55B.0.6C.0.65D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項(xiàng)和記為Sn,且Sn=2-an,n∈N*,設(shè)函數(shù)f(x)=log${\;}_{\frac{1}{2}}$x,且滿(mǎn)足bn=f(an)-3.
(1)求出數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記cn=an•bn,{cn}的前n項(xiàng)和為T(mén)n,求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,M、N分別是C1D1、CD的中點(diǎn),則異面直線(xiàn)A1N和B1M所成角的余弦值為( 。
A.$\frac{\sqrt{30}}{10}$B.0C.$\frac{\sqrt{15}}{10}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若集合A={x|-x2+2x≤0},B={x|x>1},則A∪B等于( 。
A.[2,+∞)B.[0,+∞)C.(1,2]D.(-∞,0]∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案