設(shè) 數(shù)列滿足: .
(1)求證:數(shù)列是等比數(shù)列(要指出首項(xiàng)與公比);
(2)求數(shù)列的通項(xiàng)公式.
(1)數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列;(2).
解析試題分析:(1)要證明數(shù)列是等比數(shù)列,只須證明為非零常數(shù)且,結(jié)合已知條件,只須將變形為即可,最后結(jié)合所給的條件算出首項(xiàng)即可解決本小問(wèn);(2)先由(1)的結(jié)論寫(xiě)出數(shù)列的通項(xiàng)公式,從而得到,應(yīng)用累加法及等比數(shù)列的前項(xiàng)和公式可求得數(shù)列的通項(xiàng)公式.
試題解析:(1)由
又,數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列 5分
(2) 7分
,令
疊加得
11分
13分.
考點(diǎn):1.等比數(shù)列通項(xiàng)公式及其前項(xiàng)和公式;2.由遞推公式求數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)正數(shù)數(shù)列為等比數(shù)列,,記.
(1)求和;
(2)證明: 對(duì)任意的,有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若數(shù)列滿足條件:存在正整數(shù),使得對(duì)一切都成立,則稱(chēng)數(shù)列為級(jí)等差數(shù)列.
(1)已知數(shù)列為2級(jí)等差數(shù)列,且前四項(xiàng)分別為,求的值;
(2)若為常數(shù)),且是級(jí)等差數(shù)列,求所有可能值的集合,并求取最小正值時(shí)數(shù)列的前3項(xiàng)和;
(3)若既是級(jí)等差數(shù)列,也是級(jí)等差數(shù)列,證明:是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為T(mén)n,滿足Tn=2Sn-n2,n∈N﹡.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列滿足,.
(1)求數(shù)列的通項(xiàng);
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在個(gè)實(shí)數(shù)組成的行列數(shù)表中,先將第一行的所有空格依次填上,,,再將首項(xiàng)為公比為的數(shù)列依次填入第一列的空格內(nèi),然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)律填寫(xiě)其它空格
| 第1列 | 第2列 | 第3列 | 第4列 | | 第列 |
第1行 | | |||||
第2行 | | | | | | |
第3行 | | | | | | |
第4行 | | | | | | |
| | | | | | |
第行 | | | | | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和與滿足.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且對(duì)任意的,都有.
(1)若{bn }的首項(xiàng)為4,公比為2,求數(shù)列{an+bn}的前n項(xiàng)和Sn;
(2)若 ,試探究:數(shù)列{bn}中是否存在某一項(xiàng),它可以表示為該數(shù)列中其它項(xiàng)的和?若存在,請(qǐng)求出該項(xiàng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),求該數(shù)列的通項(xiàng)公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com