分析 (1)設(shè){an}的公差為d,由S3=0,S5=-5可求得a1=1,d=1,從而可求{an}的通項(xiàng)公式;
(2)令bn=(2-an)2n=n•2n,Tn=b1+b2+…+bn-1+bn=1•21+2•22+…+(n-1)•2n-1+n•2n,利用錯(cuò)位相減法求和可得數(shù)列{(2-an)2n} 的前n項(xiàng)和.
解答 解:(1)設(shè){an}的公差為d,則Sn=na1+$\frac{n(n-1)}{2}d$---------(1分)
由已知可得$\left\{\begin{array}{l}{{3a}_{1}+3d=0}\\{{5a}_{1}+10d=-5}\end{array}\right.$,解得a1=1,d=1.---------(4分)
故{an}的通項(xiàng)公式為an=2-n.----------(6分)
(2)令bn=(2-an)2n=n•2n.
令Tn=b1+b2+…+bn-1+bn=1•21+2•22+…+(n-1)•2n-1+n•2n-----(7分)
有2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1.-----(8分)
兩式相減得:
-Tn=21+22+…+2n-n•2n+1=$\frac{2(1{-2}^{n})}{1-2}$-n•2n+1=-2+(1-n)•2n+1-----(10分)
則Tn=2+(n-1)•2n+1----------(12分)
點(diǎn)評(píng) 本題考查數(shù)列的求和,考查等差數(shù)列的通項(xiàng)公式的應(yīng)用,突出考查錯(cuò)位相減法求和的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{2}{3}$ | B. | -$\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 選擇結(jié)構(gòu)中不含有順序結(jié)構(gòu) | |
B. | 選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)和順序結(jié)構(gòu)在流程圖中一定是并存的 | |
C. | 循環(huán)結(jié)構(gòu)中一定包含選擇結(jié)構(gòu) | |
D. | 選擇結(jié)構(gòu)中一定有循環(huán)結(jié)構(gòu) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 0 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com