若函數(shù)y=f(x)在R單調(diào)遞減,且f(2a+2)>f(a2-1),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)的單調(diào)性可去掉不等式f(2a+2)>f(a2-1)中的符號“f”,從而可解出a的范圍.
解答: 解:因?yàn)楹瘮?shù)f(x)是R上的單調(diào)遞減函數(shù),
所以f(2a+2)>f(a2-1)可化為:
2a+2<a2-1,即a2-2a-3>0,
所以實(shí)數(shù)a的取值范圍是{a|a>3或a<-1}.
故答案為:{a|a>3或a<-1}
點(diǎn)評:本題考查函數(shù)的單調(diào)性,及應(yīng)用單調(diào)性解抽象不等式問題,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一元二次函數(shù)f(x)=x2+bx+c,且不等式x2+bx+c>0的解集為{x|x<-1或x>
1
2
},則f(10x)>0的解集為( 。
A、{x|x<-1或x>lg2}
B、{x|-1<x<lg2}
C、{x|x>-lg2}
D、{x|x<-lg2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知b-c=
1
4
a,2sinB=3sinC,則cosA=( 。
A、-
1
4
B、
1
4
C、
7
8
D、
11
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)f(x),滿足f(1)=0,f(3)=-2,
(1)求函數(shù)解析式,作出函數(shù)f(x)的圖象;
(2)求函數(shù)f(x)在x∈[-1,2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2x-x2的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)若a∈R,則“a2>a”是“a>1”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2-x,x≤0
4-x2
,0<x≤2
,則
2
-2
f(x)dx的值為( 。
A、π+6B、π-2C、2πD、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x
-lnx(x>0)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的函數(shù)f(x)滿足:對任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,則下列說法一定正確的是( 。
A、f(x)-1是奇函數(shù)
B、f(x)-1是偶函數(shù)
C、f(x)+1是奇函數(shù)
D、f(x)+1是偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案