14.如圖,直三棱柱ABC-A1B1C1中,AA1=AB,AB⊥BC,且N是A1B的中點.
(1)求證:直線AN⊥平面A1BC;
(2)若M在線段BC1上,且MN∥平面A1B1C1,求證:M是BC1的中點.

分析 (1)證明AN⊥BC,AN⊥A1B,即可證明直線AN⊥平面A1BC;
(2)證明MN∥A1C1,利用 N是A1B的中點,可得結(jié)論.

解答 證明:(1)∵直三棱柱ABC-A1B1C1,
∴AA1⊥平面ABC,BC?平面ABC,∴AA1⊥BC,
∵AB⊥BC,AA1∩AB=A,
∴BC⊥平面A1AB,…(3分)
∵AN?平面A1AB,
∴AN⊥BC,
∵AA1=AB,且 N是A1B的中點,
∴AN⊥A1B,
∵A1B∩BC=B,
∴直線AN⊥平面A1BC…(7分)
(2)證明:∵MN∥平面A1B1C1
∴MN∥A1C1,
∵N是A1B的中點,
∴M是BC1的中點…(14分)

點評 本題考查線面垂直的判定與性質(zhì),考查線面平行的性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若復(fù)數(shù)z滿足2$\overline{z}$-1=3+6i(i是虛數(shù)單位),則z=2-3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.宿州市教體局為了了解2017屆高三畢業(yè)生學(xué)生情況,利用分層抽樣抽取50位學(xué)生數(shù)學(xué)學(xué)業(yè)水平測試成績作調(diào)查,制作了成績頻率分布直方圖,如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100).
(Ⅰ)求圖中x的值;
(Ⅱ)根據(jù)直方圖估計宿州市2017屆高三畢業(yè)生數(shù)學(xué)學(xué)業(yè)水平測試成績的平均分;
(Ⅲ)在抽取的50人中,從成績在[50,60)和[90,100]的學(xué)生中隨機選取2人,求這2人成績差別不超過10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市公租房的房源位于A,B,C,D四個片區(qū),設(shè)每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,在該市的甲、乙、丙三位申請人中:
(1)求所有的申請情況總數(shù);
(2)求甲、乙兩位申請同一片區(qū)房源的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知圓C過點(2,$\sqrt{3}$),且與直線x-$\sqrt{3}$y+3=0相切于點(0,$\sqrt{3}$),則圓C的方程為(x-1)2+y2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)z滿足(3+4i)z=25,則復(fù)平面內(nèi)表示z的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a2+b2=λab.
(1)若$λ=\sqrt{6}$,$B=\frac{5π}{6}$,求sinA;
(2)若λ=4,AB邊上的高為$\frac{{\sqrt{3}c}}{6}$,求C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x2-2x<0},$B=\left\{{x\left|{-\sqrt{3}<x<\sqrt{3}}\right.}\right\}$,則A∩B=(  )
A.$\left\{{x\left|{-\sqrt{3}<x<0}\right.}\right\}$B.$\left\{{x\left|{-\sqrt{3}<x<2}\right.}\right\}$C.$\left\{{x\left|{0<x<\sqrt{3}}\right.}\right\}$D.{x|-2<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\ ax+1,x≤0\end{array}\right.$.若a>0,則函數(shù)y=f(f(x))-1有3個零點.

查看答案和解析>>

同步練習(xí)冊答案