分析 (1)對k分類討論,利用一元二次不等式的解法即可得出.
(2)根據(jù)B=A∩Z(其中Z為整數(shù)集),集合B為有限集,即可得出.
解答 解:(1)①當(dāng)k<0,A={x|$\frac{k}{4}+\frac{9}{4k}+3<x<\frac{11}{2}$};
②當(dāng)k=0,A={x|x$<\frac{11}{2}$};
③當(dāng)0<k<1或k>9,A={x|x$<\frac{11}{2}$,或x>$\frac{k}{4}+\frac{9}{4k}+3$};
④當(dāng)1≤k≤9,A={x|x<$\frac{k}{4}+\frac{9}{4k}+3$,或x>$\frac{11}{2}$};
(2)B=A∩Z(其中Z為整數(shù)集),集合B為有限集,
只有k<0,且$\frac{k}{4}+\frac{9}{4k}$≥-2,解得$-4-\sqrt{7}$≤k≤-4+$\sqrt{7}$,
可得:B={2,3,4,5}.
點(diǎn)評 本題考查了一元二次不等式的解法,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | $4\sqrt{5}$ | C. | $6\sqrt{2}$ | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (k+1)3 | B. | (k+1)3+k3 | C. | (k-1)3+k3 | D. | (2k+1)(k+1)3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com