【題目】設雙曲線x2﹣ =1的左、右焦點分別為F1、F2 , 若點P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是 .
科目:高中數學 來源: 題型:
【題目】設數列A: ,
,…
(N≥2)。如果對小于n(2≤n≤N)的每個正整數k都有
<
,則稱n是數列A的一個“G時刻”。記“G(A)是數列A 的所有“G時刻”組成的集合。
(1)對數列A:-2,2,-1,1,3,寫出G(A)的所有元素;
(2)證明:若數列A中存在 使得
>
,則G(A)
;
(3)證明:若數列A滿足 -
≤1(n=2,3, …,N),則GA.的元素個數不小于
-
。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】漳州市博物館為了保護一件珍貴文物,需要在館內一種透明又密封的長方體玻璃保護罩內充入保護液體.該博物館需要支付的總費用由兩部分組成:①罩內該種液體的體積比保護罩的容積少0.5立方米,且每立方米液體費用500元;②需支付一定的保險費用,且支付的保險費用與保護罩容積成反比,當容積為2立方米時,支付的保險費用為4000元.
(Ⅰ)求該博物館支付總費用與保護罩容積
之間的函數關系式;
(Ⅱ)求該博物館支付總費用的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1,A1A⊥底面ABC,且△ABC為正三角形,A1A=AB=6,D為AC中點.
(1)求三棱錐C1﹣BCD的體積;
(2)求證:平面BC1D⊥平面ACC1A1;
(3)求證:直線AB1∥平面BC1D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
與拋物線
相交于
、
兩點.
(1)求證:“如果直線過點
,那么
”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=,AB=
,AC=2,A1C1=1,
.
(1)證明:BCA1D;
(2)求二面角A-CC1-B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖
(1)由折線圖看出,可用線性回歸模型擬合與
的關系,請建立
關于
的回歸方程(系數精確到0.01);
(2)預測2018年我國生活垃圾無害化處理量.
附注:
參考公式:設具有線性相關關系的兩個變量的一組觀察值為
,
則回歸直線方程的系數為:
,
.
參考數據: ,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,正確的命題有__________.
①回歸直線恒過樣本點的中心
,且至少過一個樣本點;
②將一組數據的每個數據都加一個相同的常數后,方差不變;
③用相關指數來刻面回歸效果;表示預報變量對解釋變量變化的貢獻率,越接近于1,說明模型的擬合效果越好;
④若分類變量和
的隨機變量
的觀測值
越大,則“
與
相關”的可信程度越小;
⑤.對于自變量和因變量
,當
取值一定時,
的取值具有一定的隨機性,
,
間的這種非確定關系叫做函數關系;
⑥.殘差圖中殘差點比較均勻的地落在水平的帶狀區(qū)域中,說明選用的模型比較合適;
⑦.兩個模型中殘差平方和越小的模型擬合的效果越好.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com