1.若不等式3x2+1≥mx(x-1)對于?x∈R恒成立,則實數(shù)m的取值范圍是-6≤m≤2.

分析 把不等式化為(3-m)x2+mx+1≥0,利用判別式列出不等式組,求出m的取值范圍.

解答 解:不等式3x2+1≥mx(x-1)可化為(3-m)x2+mx+1≥0,
該不等式對?x∈R恒成立,
當(dāng)3-m=0時,不等式化為3x+1≥0,不滿足條件;
∴$\left\{\begin{array}{l}{3-m>0}\\{△≤0}\end{array}\right.$,
即$\left\{\begin{array}{l}{m<3}\\{{m}^{2}-4(3-m)≤0}\end{array}\right.$,
解得-6≤m≤2.
故答案為:-6≤m≤2.

點評 本題主要考查了二次函數(shù)的性質(zhì)以及不等式的恒成立問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\frac{{ln({x^2}-4x+4)}}{{{{(x-2)}^3}}}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{|x|(x≤0)}\end{array}\right.$,函數(shù)g(x)滿足以下三點條件:①定義域為R;②對任意x∈R,有g(shù)(x)=$\frac{1}{2}$g(x+2);③當(dāng)x∈[-1,1]時,g(x)=$\sqrt{1-{x^2}}$.則函數(shù)y=f(x)-g(x)在區(qū)間[-4,4]上零點的個數(shù)為( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一個袋中有10個大小相同的黑球、白球和紅球,已知從袋中任意摸出2個球,至少得到一個白球的概率是$\frac{7}{9}$.
(1)求白球的個數(shù);
(2)求從袋中任意摸出3個球,至多有一個白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,直線AB經(jīng)過⊙O上一點C,且OA=OB,CA=CB,⊙O交直線OB于E、D.
(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED=$\frac{1}{2}$,⊙O的半徑為2,求OA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,點A(c,b),右焦點F(c,0),橢圓上存在一點M,使得$\overrightarrow{OM}•\overrightarrow{OA}=\overrightarrow{OF}•\overrightarrow{OA}$,且$\overrightarrow{OM}+\overrightarrow{OF}=t\overrightarrow{OA}({t∈R})$,則該橢圓的離心率為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)的定義域是R,f(0)=2,對任意x∈R,f′(x)>f(x)+1,則下列正確的為( 。
A.(f(1)+1)•e>f(2)+1B.3e<f(2)+1
C.3•e≥f(1)+1D.3e2與f(2)+1大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ y+1≥0\\ x+y+1≤0\end{array}\right.$,則2x-y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(9x+$\frac{1}{3\sqrt{x}}$)6展開式的常數(shù)項為15.

查看答案和解析>>

同步練習(xí)冊答案