如圖,在平面直角坐標(biāo)系中,已知橢圓經(jīng)過點,橢圓的離心率.

(1)求橢圓的方程;
(2)過點作兩直線與橢圓分別交于相異兩點、.若的平分線與軸平行, 試探究直線的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.
(1);(2)定值.

試題分析:(1)待定系數(shù)法求橢圓方程.找到兩個關(guān)于的方程即可.(2)因為的平分線與軸平行,所以直線MA,MB的斜率互為相反數(shù).假設(shè)直線MA聯(lián)立橢圓方程即可得到A點的坐標(biāo),因為M點坐標(biāo)已知.再把k換成-k即可求出B點的坐標(biāo).從而求出AB的斜率即可.本題第一小題屬于常規(guī)題型.第二小題要把握以下三方面:首先是MA,MB的斜率是成相反數(shù),假設(shè)了一個另一個也知道.其次A,B的坐標(biāo)也是只要知道一個另一個只要把k換成-k即可.再次求A,B坐標(biāo)時M點已經(jīng)知道,用韋達(dá)定理很好求出.
試題解析:(1)由,得,故橢圓方程為,
又橢圓過點,則,解之得
因此橢圓方程為
(2)設(shè)直線的斜率為,,由題,直線MA與MB的斜率互為相反數(shù),直線MB的斜率為,聯(lián)立直線MA與橢圓方程: ,
整理得,由韋達(dá)定理,,
,整理可得,

所以為定值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點。
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且L與的兩個焦點A和B滿足(其中O為原點),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線,、是雙曲線的左右頂點,是雙曲線上除兩頂點外的一點,直線與直線的斜率之積是,
求雙曲線的離心率;
若該雙曲線的焦點到漸近線的距離是,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓C:過點(0,4),離心率為
(Ⅰ)求C的方程;(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線為坐標(biāo)原點,動直線
拋物線交于不同兩點
(1)求證:·為常數(shù);
(2)求滿足的點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動圓經(jīng)過點,且和直線相切,
(1)求動圓圓心的軌跡C的方程;
(2)已知曲線C上一點M,且5,求M點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,焦距為,且經(jīng)過點,直線交橢圓于不同的兩點A,B.
(1)求的取值范圍;,
(2)若直線不經(jīng)過點,求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線過橢圓的左焦點F,且與橢圓相交于P、Q兩點,M為PQ的中點,O為原點.若△FMO是以O(shè)F為底邊的等腰三角形,則直線l的方程為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是雙曲線與橢圓的公共焦點,點A是在第一象限的公共點.若,則的離心率是(      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案