【題目】如圖,四棱錐中,底面ABCD,,,.
Ⅰ求證:平面PAC;
Ⅱ若側(cè)棱PC上的點F滿足,求三棱錐的體積.
【答案】(1)見解析 (2)
【解析】
試題(1)由于可以證明要證明只需證明從而中的兩條相交直線,(2)由(1)知為等腰三角形,面積容易求出,考慮以BCD為底面.F為頂點 的三棱錐,以及以BCD為底面,P為頂點的三棱錐面積容易求出,所以
試題解析:(1)證明:因為BC=CD,所以△BCD為等腰三角形,
又∠ACB=∠ACD,故BD⊥AC. 因為PA⊥底面ABCD,所以PA⊥BD.
從而BD與平面PAC內(nèi)兩條相交直線PA,AC都垂直, 所以BD⊥平面PAC.
(2)解:三棱錐PBCD的底面BCD的面積S△BCD=BC·CD·sin∠BCD=×2×2×sin=.
由PA⊥底面ABCD,得=·S△BCD·PA=××2=2.
由PF=7FC,得三棱錐FBCD的高為PA,
故=·S△BCD·PA=×××2=,
所以=-=2-=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,橢圓:的左、右焦點分別為,,右頂點為,上頂點為,若,,成等比數(shù)列,橢圓上的點到焦點的距離的最大值為.
求橢圓的標(biāo)準(zhǔn)方程;
過該橢圓的右焦點作兩條互相垂直的弦與,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃岡市的天氣預(yù)報顯示,大別山區(qū)在今后的三天中,每一天有強(qiáng)濃霧的概率為,現(xiàn)用隨機(jī)模擬的方法估計這三天中至少有兩天有強(qiáng)濃霧的概率:先利用計算器產(chǎn)生之間整數(shù)值的隨機(jī)數(shù),并用0,1,2,3,4,5表示沒有強(qiáng)濃霧,用6,7,8,9表示有強(qiáng)濃霧,再以每3個隨機(jī)數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機(jī)數(shù):
779 537 113 730 588 506 027 394 357 231
683 569 479 812 842 273 925 191 978 520
則這三天中至少有兩天有強(qiáng)濃霧的概率近似為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)求與的直角坐標(biāo)方程;
(2)若與的交于點,與交于、兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校參加高一年級期中考試的學(xué)生中隨機(jī)抽出60名學(xué)生,將其數(shù)學(xué)成績分成六段、、、后得到如圖部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個頻率分布直方圖;
統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;
若從60名學(xué)生中隨抽取2人,抽到的學(xué)生成績在記0分,在記1分,在記2分,用表示抽取結(jié)束后的總記分,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某公司舉行的年終慶典活動中,主持人利用隨機(jī)抽獎軟件進(jìn)行抽獎:由電腦隨機(jī)生成一張如圖所示的33表格,其中1格設(shè)獎300元,4格各設(shè)獎200元,其余4格各設(shè)獎100元,點擊某一格即顯示相應(yīng)金額.某人在一張表中隨機(jī)不重復(fù)地點擊3格,記中獎的總金額為X元.
(1)求概率;
(2)求的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C:的離心率為,其右焦點到橢圓C外一點的距離為,不過原點O的直線l與橢圓C相交于A,B兩點,且線段AB的長度為2.
1求橢圓C的方程;
2求面積S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com