已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.

(1)求數(shù)列{bn}的通項(xiàng)公式bn;

(2)設(shè)數(shù)列{an}的通項(xiàng)an=loga(1+)(其中a>0且a≠1)記Sn是數(shù)列{an}的前n項(xiàng)和,試比較Snlogabn+1的大小,并證明你的結(jié)論

(1)bn=3n-2(2)當(dāng)a>1時(shí),Snlogabn+1?,當(dāng) 0<a<1時(shí),Snlogabn+1


解析:

設(shè)數(shù)列{bn}的公差為d,由題意得,∴bn=3n-2

(2)證明:由bn=3n-2知

 

Sn=loga(1+1)+loga(1+)+…+loga(1+)

=loga[(1+1)(1+)…(1+ )]

logabn+1=loga,于是,比較Snlogabn+1?的大小比較(1+1)(1+)…

(1+)與的大小.

n=1,有(1+1)=

n=2,有(1+1)(1+

推測:(1+1)(1+)…(1+)> (*)

①當(dāng)n=1時(shí),已驗(yàn)證(*)式成立.

②假設(shè)n=k(k≥1)時(shí)(*)式成立,即(1+1)(1+)…(1+)>

則當(dāng)n=k+1時(shí),

,即當(dāng)n=k+1時(shí),(*)式成立

由①②知,(*)式對任意正整數(shù)n都成立.

于是,當(dāng)a>1時(shí),Snlogabn+1?,當(dāng) 0<a<1時(shí),Snlogabn+1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、若數(shù)列{an}滿足a2n+1-a2n=d(其中d是常數(shù)),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的等差數(shù)列,則“m=0”是“數(shù)列{bn}是等方差數(shù)列”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足an+12-an2=d(其中d是常數(shù),n∈N﹡),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個(gè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足
a
2
n+1
-
a
2
n
=d(其中d是常數(shù),n∈N),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個(gè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省南通市啟東中學(xué)高三考前輔導(dǎo)材料之小題強(qiáng)化篇1(解析版) 題型:解答題

若數(shù)列{an}滿足=d(其中d是常數(shù),n∈N),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的    條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個(gè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省高考數(shù)學(xué)仿真押題試卷(02)(解析版) 題型:解答題

若數(shù)列{an}滿足an+12-an2=d(其中d是常數(shù),n∈N﹡),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的    條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個(gè))

查看答案和解析>>

同步練習(xí)冊答案