直三棱柱ABC-A1B1C1中,AC=AB=AA1,且異面直線AC1與A1B所成的角為60°,則∠CAB等于
 
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:由已知條件,構(gòu)造正方體ABDC-A1B1D1C1,由此能求出∠CAB=90°.
解答: 解:由已知條件,構(gòu)造正方體ABDC-A1B1D1C1,
滿足條件AC=AB=AA1,
且異面直線AC1與A1B所成的角為60°,
∴∠CAB=90°.
故答案為:90°.
點(diǎn)評:本題考查異面直線所成角的大小的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意構(gòu)造法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x2-2x-3|,x∈R.
(1)在區(qū)間[-2,4]上畫出函數(shù)f(x)的圖象;
(2)寫出該函數(shù)在R上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,求證:
a2-b2
c2
=
sin(A-B)
sinC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x||x-a|≤1}與B={x||2x-5|≥3},且A∩B=O,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+a|x-b|-1(x∈R).
(1)若函數(shù)f(x)為偶函數(shù),求實(shí)數(shù)b的值;
(2)在(1)的條件下,若函數(shù)f(x)在(0,+∞)不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=1時(shí),先求函數(shù)f(x)的最小值g(b),再判斷并證明函數(shù)g(b)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,△PAD是等邊三角形,已知BD=2AD=8,AB=2DC=4
5
,設(shè)M是PC上的一點(diǎn).
(1)求VP-ABCD
(2)求PB與平面ABCD所成的角;
(3)求證:平面MBD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行六面體ABCD-A1B1C1D1中,以頂點(diǎn)A為端點(diǎn)的三條棱長度都為2,且兩兩夾角為60°,則DB1和C1A1所成角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在曲線y=x3-x上有兩個點(diǎn)O(0,0),A(2,6),若I是
OA
上的一點(diǎn),并使得△AOI的面積最大,求I點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,其中ABCD是正方形,AA1>AB.設(shè)點(diǎn)A到直線B1D的距離和到平面DCB1A1的距離分別為d1,d2,則
d1
d2
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案