1.定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2)=f(2-x),當(dāng)x∈[3,4]時(shí),f(x)=x-2,則( 。
A.f(1)>f(0)B.f(1)>f(4)C.$f({\frac{5}{2}})>f(1)$D.$f({\frac{5}{2}})>f(2)$

分析 利用函數(shù)的周期性以及函數(shù)的奇偶性,結(jié)合函數(shù)的解析式求解即可.

解答 解:定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2)=f(2-x),函數(shù)的周期為2,關(guān)于x=2對(duì)稱,
當(dāng)x∈[3,4]時(shí),f(x)=x-2,
f(1)=f(3)=3-2=1,
$f(\frac{5}{2})$=f($\frac{1}{2}$)=f($-\frac{1}{2}$)=f($\frac{7}{2}$)=$\frac{7}{2}-2=\frac{3}{2}$,
f(0)=f(2)=f(4)=2.
∴$f(\frac{5}{2})>f(1)$.
故選:C.

點(diǎn)評(píng) 本題考查抽象函數(shù)的應(yīng)用,函數(shù)值的求法,函數(shù)的奇偶性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}是等差數(shù)列,且滿足a1+a2+a3=6,a5=5;數(shù)列{bn}滿足bn-bn-1=an-1(n≥2,n∈N*),b1=1.
(1)求an和bn;
(2)記數(shù)列cn=$\frac{1}{2_{n}+4n}$,(n∈N*),求{cn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.定義在R上的函數(shù)f(x)對(duì)任意的實(shí)數(shù)a、b、c,都有:f(a+b)+f(b+c)+f(a+c)≥3f(a+2b+c),則f(2014)-f(2013)的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知n∈N*,求證:$\frac{1}{2+1}$+$\frac{2}{{2}^{2}+2}$+$\frac{3}{{2}^{3}+3}$+…+$\frac{n}{{2}^{n}+n}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\frac{{a}^{2x}-(t-1)}{{a}^{x}}$(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0對(duì)一切x∈R恒成立的實(shí)數(shù)k的取值范圍;
(3)若函數(shù)f(x)的圖象過點(diǎn)(1,$\frac{3}{2}$),是否存在正數(shù)m,且m≠1使函數(shù)g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值為0,若存在,求出m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各角中,與-1050°的角終邊相同的角是( 。
A.60°B.-60°C.30°D.-30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.比較sin1,sin2與sin3的大小關(guān)系為sin3<sin1<sin2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=sin(x+φ)cosx(0<φ<π)是偶函數(shù),則φ的值等于$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)是定義在R上的偶函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=x-x2,則當(dāng)x∈(0,+∞)時(shí),f(x)的表達(dá)式為( 。
A.x+x2B.-x+x2C.-x-x2D.x-x2

查看答案和解析>>

同步練習(xí)冊(cè)答案