5.已知函數(shù)f(x)=Asin(2x+φ)(A≠0)滿足f(x+a)=f(a-x),則f(a+$\frac{π}{4}$)=(  )
A.AB.-AC.0D.不確定

分析 由題意求出函數(shù)的對稱軸,函數(shù)的周期,利用正弦函數(shù)的基本性質(zhì)即可求出f(a+$\frac{π}{4}$)的值.

解答 解:函數(shù)f(x)=Asin(2x+φ)(A≠0)滿足f(x+a)=f(a-x),
∴函數(shù)關(guān)于x=a對稱,x=a時函數(shù)取得最值,
∴2a+φ=kπ+$\frac{π}{2}$,k∈Z,
∴f(a+$\frac{π}{4}$)=Asin(2a+$\frac{π}{2}$+φ)=Acos(2a+φ)=Acos(kπ+$\frac{π}{2}$)=0.
故選:C.

點評 本題考查三角函數(shù)的基本性質(zhì),函數(shù)的周期對稱性的應(yīng)用,三角函數(shù)的最值是解題的關(guān)鍵,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)m滿足對任意 x∈M(M⊆D),均有x+m∈D,且f(x+m)≥f(x),則稱f(x)為M上的m高調(diào)函數(shù).如果定義域為R的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的8高調(diào)函數(shù),那么實數(shù)a的取值范圍是$[-\sqrt{2},\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖是一個幾何體的三視圖,若它的體積是3$\sqrt{3}$,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列判斷正確的是(1)(5)(把正確的序號都填上).
(1)對應(yīng):t→s,其中s=t2,t∈R,s∈R,此對應(yīng)為函數(shù);
(2)函數(shù)y=|x-1|與y=$\left\{\begin{array}{l}x-1,x>1\\ 1-x,x<1\end{array}$是同一函數(shù);
(3)若函數(shù)f(x)在區(qū)間(-∞,0)上遞增,在區(qū)間[0,+∞)上也遞增,則函數(shù)f(x)必在R上遞增;
(4)A={x|x2+x-6=0},B={x|mx+1=0},且A∪B=A,則m的取值集合是{-$\frac{1}{2}$,$\frac{1}{3}$};
(5)定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)f(x)在R上不是單調(diào)減函數(shù);
(6)函數(shù)y=f(2x-1)的圖象可由y=f(2x)的圖象向右平移1個單位得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=ax3+x+1有極值,則a的取值范圍是a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.表面積為24π的圓柱,當(dāng)其體積最大時,該圓柱的底面半徑與高的比為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.畫出函數(shù)f(x)=|x2-4x-5|的圖象,并寫出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在5道題中有3道理科題和2道文科題,如果不放回地依次抽2道題,在第一次抽到理科題的條件下,第二次抽到理科題的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)={x^m}-\frac{2}{x},且\;f(4)=\frac{7}{2}$.
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)寫出不等式f(x)>1的解集(不要求寫出解題過程).

查看答案和解析>>

同步練習(xí)冊答案