若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為(  )
A.B.C.D.
選D
解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖, 兩點(diǎn)分別在射線OS,OT上移動(dòng),
,O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足.
(1)求的值
(2)求點(diǎn)P的軌跡C的方程,并說(shuō)明它表示怎樣的曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

雙曲線中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,與圓x2+y2=17交于A(4,-1).若圓在點(diǎn)A的切線與雙曲線的一條漸近線平行,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn)。求雙曲線C2的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)離心率為的橢圓上有一點(diǎn)到橢圓兩焦點(diǎn)的距離和為.以橢圓的右焦點(diǎn)為圓心,短軸長(zhǎng)為直徑的圓有切線為切點(diǎn)),且點(diǎn)滿足為橢圓的上頂點(diǎn))。(I)求橢圓的方程;(II)求點(diǎn)所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直線與雙曲線的左支交于兩點(diǎn),另一直線過(guò)點(diǎn)的中點(diǎn),求直線軸上的截距的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),給定兩點(diǎn),點(diǎn)滿足   ,其中,且.  (1)求點(diǎn)的軌跡方程;(2)設(shè)點(diǎn)的軌跡與雙曲線交于兩點(diǎn),且以為直徑的圓過(guò)原點(diǎn),求證:為定值;(3)在(2)的條件下,若雙曲線的離心率不大于,求雙曲線實(shí)軸長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.
已知雙曲線設(shè)過(guò)點(diǎn)的直線l的方向向量
(1)      當(dāng)直線l與雙曲線C的一條漸近線m平行時(shí),求直線l的方程及l(fā)與m的距離;
(2)      證明:當(dāng)>時(shí),在雙曲線C的右支上不存在點(diǎn)Q,使之到直線l的距離為.

查看答案和解析>>

同步練習(xí)冊(cè)答案