14.已知函數(shù)f(x)=x2-6x-9,則函數(shù)f(x)在x∈(1,4)的值域是[-18,-14).

分析 利用二次函數(shù)在x∈(1,4)的單調(diào)性的性質(zhì)即可求得答案.

解答 解:∵f(x)=x2-6x-9=(x-3)2-18,
∴其對稱軸x=3穿過區(qū)間(1,4)
∴函數(shù)在x∈(1,4)時,f(x)min=f(3)=-18,
又f(x)在(1,3]上遞減,在[3,4)遞增,
f(1)=-14,f(4)=-17,f(4)<f(1),
∴該函數(shù)的值域為[-18,-14),
故答案為[-18,-14).

點評 本題考查二次函數(shù)的性質(zhì),著重考查二次函數(shù)的單調(diào)性與最值,考查分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.曲線y=ex在點A(0,1)處的切線斜率為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如果關(guān)于x的不等式2kx2+kx-$\frac{3}{8}$<0對一切實數(shù)x都成立,那么k的取值范圍是(-3,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{3}}{2}$,且過點($\sqrt{3}$,$\frac{1}{2}$).設(shè)點A1,B1分別是橢圓的右頂點和上頂點,如圖所示過 點A1,B1引橢圓C的兩條弦A1E、B1F.
(1)求橢圓C的方程;
(2)若直線A1E與B1F的斜率是互為相反數(shù).
①求直線EF的斜率k0 ②設(shè)直線EF的方程為y=k0x+b(-1≤b≤1)設(shè)△A1EF、△B1EF的面積分別為S1和S2,求S1+S2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)是定義在R上的增函數(shù),若f(a2-a)>f(2a2-4a),則實數(shù)a的取值范圍是(  )
A.(-∞,0)B.(0,3)C.(3,+∞)D.(-∞,0)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)f(x)=log${\;}_{\frac{1}{3}}$(x2-5x+4)的定義域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列命題中真命題的序號為(1).
(1)命題“?x>0,x2-x≤0”的否定是“?x>0,x2-x>0.”
(2)若A>B,則sinA>sinB.
(3)已知數(shù)列{an},則“an,an+1,an+2成等比數(shù)列”是“$a_{n+1}^2={a_n}{a_{n+2}}$”的充要條件
(4)已知函數(shù)$f(x)=lgx+\frac{1}{lgx}$,則函數(shù)f(x)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)軸上點A,B分別對應(yīng)-1、2,則向量$\overrightarrow{AB}$的長度是( 。
A.-1B.2C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.過拋物線C:y2=4x的焦點F的直線l交C于A,B兩點,點M(-1,2),若$\overrightarrow{MA}•\overrightarrow{MB}=0$,則直線l的斜率k=1.

查看答案和解析>>

同步練習(xí)冊答案