17.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實(shí)數(shù)x滿足f(log${\;}_{\frac{1}{2}}$|x+1|)<f(-1),則x的取值范圍是$(-3,-\frac{3}{2})∪(-\frac{1}{2},1)$.

分析 利用函數(shù)是偶函數(shù)得到不等式f(log${\;}_{\frac{1}{2}}$|x+1|)<f(-1),等價(jià)為f(|log2|x+1||)<f(1),然后利用函數(shù)在區(qū)間[0,+∞)上單調(diào)遞增即可得到不等式的解集.

解答 解:∵函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增.
∴不等式f(log${\;}_{\frac{1}{2}}$|x+1|)<f(-1),等價(jià)為f(|log2|x+1||)<f(1),
即|log2|x+1||<1
∴-1<log2|x+1|<1,
解得x的取值范圍是$(-3,-\frac{3}{2})∪(-\frac{1}{2},1)$.
故答案為$(-3,-\frac{3}{2})∪(-\frac{1}{2},1)$.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,利用函數(shù)是偶函數(shù)的性質(zhì)得到f(a)=f(|a|)是解決偶函數(shù)問(wèn)題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義上凸函數(shù)如下:設(shè)f(x)為區(qū)間I上的函數(shù),若對(duì)任意的x1,x2∈I總有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$,則稱f(x)為I上的上凸函數(shù),某同學(xué)查閱資料后發(fā)現(xiàn)了上凸函數(shù)有如下判定定理和性質(zhì)定理:
判定定理:f(x)為上凸函數(shù)的充要條件是f″(x)≥0,x∈I,其中f″(x)為f(x)的導(dǎo)函數(shù)f′(x)的導(dǎo)數(shù).
性質(zhì)定理:若函數(shù)f(x)為區(qū)間I上的下凸函數(shù),則對(duì)I內(nèi)任意的x1,x2,…,xn,都有$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$≥f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$).
請(qǐng)問(wèn):在△ABC中,sinA+sinB+sinC的最大值為$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知π<α<$\frac{3π}{2}$,sinα=-$\frac{4}{5}$.
(Ⅰ)求cosα的值;
(Ⅱ)求sin2α+3tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在直四棱柱ABCD-A1B1C1D1中,底面四邊形ABCD是直角梯形,其中
AB⊥AD,AB=BC=1,AD=2,AA1=$\sqrt{2}$.
    (Ⅰ)求證:直線C1D⊥平面ACD1;
    (Ⅱ)試求三棱錐A1-ACD1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在幾何體中,四邊形ABCD為菱形,對(duì)角線AC與BD的交點(diǎn)為O,四邊形DCEF為梯形,EF∥DC,F(xiàn)D=FB.
(Ⅰ)若DC=2EF,求證:OE∥平面ADF;
(Ⅱ)求證:平面AFC⊥平面ABCD;
(Ⅲ)若AB=FB=2,AF=3,∠BCD=60°,求AF與平面ABCD所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)的圖象過(guò)點(diǎn)P(2,4),則在(0,10]內(nèi)任取一個(gè)實(shí)數(shù)x,使得f(x)>16的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≤2}&{\;}\\{2x+y≥2}&{\;}\\{y≥0}&{\;}\end{array}\right.$,則z=ax+y的最小值為1,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.用三段論推理:“任何實(shí)數(shù)的絕對(duì)值大于0,因?yàn)閍是實(shí)數(shù),所以a的絕對(duì)值大于0”,你認(rèn)為這個(gè)推理(  )
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.是正確的

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)直線l過(guò)雙曲線C的一個(gè)焦點(diǎn),且與C的一條對(duì)稱軸垂直,l與C交于A,B兩點(diǎn),|AB|為C的實(shí)軸長(zhǎng)的2倍,則C的離心率為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案