已知函數(shù)f(x)=ax-
ln(1+x)
1+x
在x=0處取得極值.
(I)求實(shí)數(shù)a的值,并判斷,f(x)在[0,+∞)上的單調(diào)性;
(Ⅱ)若數(shù)列{an}滿足a1=1,an+1=f(an),求證:0<an+1<an≤l;
(Ⅲ)在(II)的條件.下,記sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)
,求證:sn<1.
(I)函數(shù)的導(dǎo)數(shù)為f′(x)=a-
1-ln?(1+x)
(1+x)2
,因?yàn)楹瘮?shù)在x=0處取得極值,所以f'(0)=0,解得a=1.
f′(x)=1-
1-ln?(1+x)
(1+x)2
=
(1+x)2-1+ln?(1+x)
(1+x)2
=
x2+x+ln?(1+x)
(1+x)2

因?yàn)閤≥0,所以ln(1+x)≥0,x2+x≥0,所以此時(shí)f'(x)≥0,即函數(shù)在[0,+∞)上單調(diào)遞增.
(Ⅱ)  由(I)知f(x)=x-
ln?(1+x)
1+x
,所以an+1=f(an)=an-
ln?(1+an)
1+an
,下面用數(shù)學(xué)歸納法證明an>0.
①當(dāng)n=1時(shí),an=1>0,成立.
②假設(shè)當(dāng)n=k,(n∈N•)時(shí)ak>0.因?yàn)楹瘮?shù)f(x)在[0,+∞)上單調(diào)遞增,所以f(ak)>f(0)=0,所以an+1=f(an)>0成立.
綜上an>0.又an-an+1=
ln?(1+an)
an
,因?yàn)閍n>0,所以an-an+1=
ln?(1+an)
1+an
>0
,即an>an+1
而a1=1,所以0<an+1<an≤l成立.
所以由①②可知0<an+1<an≤l成立.
(Ⅲ)由(II)知,0<an+1<an≤l,所以
1
an
1
an+1
,1+
1
an
<1+
1
an+1
,即
1+an
an
1+an+1
an+1
,所以
an
1+an
an+1
1+an+1
>0

所以
a1?a2???an
(1+a1)(1+a2)???(1+an)
=
a1
1+a1
?
a2
1+a2
???
an
1+an
a1
1+a1
?
a1
1+a1
???
a1
1+a1
=(
a1
1+a1
)
n

所以sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)

<(
a1
1+a1
)+(
a1
1+a1
)
2
+…+(
a1
1+a1
)
n
=
a1
1+a1
[1-(
a1
1+a1
)
n
]
1-
a1
1+a1
a1
1+a1
1-
a1
1+a1
=a1=1

所以sn<1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案