4.設(shè)等比數(shù)列{an}的通項為an=$\frac{1}{n(n+1)}$,則其前10項的和S10等于( 。
A.$\frac{9}{10}$B.$\frac{11}{10}$C.$\frac{10}{9}$D.$\frac{10}{11}$

分析 由an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,直接利用裂項相消法求得S10

解答 解:由an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
得S10=a1+a2+…+a10=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{10}-\frac{1}{11}$
=1-$\frac{1}{11}$=$\frac{10}{11}$.
故選:D.

點評 本題考查數(shù)列遞推式,訓(xùn)練了裂項相消法求數(shù)列的前n項和,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.二次函數(shù)f(x)=ax2-$\sqrt{2}$bx+c,其中a,b,c是某鈍角三角形的三邊,且三邊中b最長.
(1)試證明函數(shù)有兩個零點;
(2)若a=c,試求零點α,β間距離|α-β|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\sqrt{{x^2}-ax+3a}$,對于任意x≥2,當(dāng)△x>0時,恒有f(x+△x)>f(x),則實數(shù)a的取值范圍是[-4,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某種商品零售價為每件1.2元;20件以上(含20件)可以享受批發(fā)價,批發(fā)價為每件1元;100件以上(含100件)可以享受優(yōu)惠批發(fā)價,優(yōu)惠批發(fā)價為每件0.8元.寫出購買該商品件數(shù)和應(yīng)付款數(shù)的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.己知數(shù)列{an}的前n項和為Sn,且a1=1,an+1=$\frac{1}{3}$Sn,n∈N*,則an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{3}•(\frac{4}{3})^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}的首項a1=a,其前n項和為Sn,且滿足Sn+Sn-1=4n2(n≥2,n∈N+),若對任意n∈N+,an<an+1恒成立,則a的取值范圍是( 。
A.(3,5)B.(4,6)C.[3,5)D.[4,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an},a1=20,an=an+1+2,求:
(1)a5的值;
(2)數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系中,O為坐標(biāo)原點,過點P(1,1)作直線L與圓x2+y2=9分別相交于A、B兩點,則當(dāng)|AB|從最短到最長(逆時針方向旋轉(zhuǎn))變化的過程中,直線L的斜率的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知P(x,y)是中心在原點,焦距為4$\sqrt{2}$的雙曲線上一點,且$\frac{y}{x}$的取值范圍為(-1,1),則該雙曲線的方程是( 。
A.x2-y2=8B.y2-x2=8C.x2-y2=4D.y2-x2=4

查看答案和解析>>

同步練習(xí)冊答案