已知是正數(shù)組成的數(shù)列,,且點(diǎn)在函數(shù)的圖象上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,,求證:

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)將點(diǎn)代入到,得,即,又,所以數(shù)列是以1為首項(xiàng),公差為1的等差數(shù)列.故
(Ⅱ)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/59/b/w55gs1.png" style="vertical-align:middle;" />,即,利用迭加法求出,再作差比較,化簡得出
,所以得證.
試題解析:(Ⅰ)由已知得,即,又,
所以數(shù)列是以1為首項(xiàng),公差為1的等差數(shù)列.故
(Ⅱ)由(Ⅰ)知:從而,



因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/51/f/umkyg1.png" style="vertical-align:middle;" />



所以
考點(diǎn):1.數(shù)列通項(xiàng)公式的求解;2.數(shù)列與不等式的綜合.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足:
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令,數(shù)列{bn}的前n項(xiàng)和為Tn.證明:對于任意n  N*,都有Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知集合,,設(shè)是等差數(shù)列的前項(xiàng)和,若的任一項(xiàng),且首項(xiàng)中的最大數(shù), .
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)上兩點(diǎn),若,且P點(diǎn)的橫坐標(biāo)為.
(Ⅰ)求P點(diǎn)的縱坐標(biāo);
(Ⅱ)若;
(Ⅲ)記為數(shù)列的前n項(xiàng)和,若對一切都成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的各項(xiàng)均為正數(shù),其前n項(xiàng)的和為,對于任意正整數(shù)m,n, 恒成立.
(Ⅰ)若=1,求及數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)公比大于零的等比數(shù)列的前項(xiàng)和為,且,,數(shù)列的前項(xiàng)和為,滿足,
(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)滿足對所有的均成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

各項(xiàng)均為正數(shù)的數(shù)列{}中,a1=1,是數(shù)列{}的前n項(xiàng)和,對任意n∈N﹡,有2=2p+p-p(p∈R).
(1)求常數(shù)p的值;
(2)求數(shù)列{}的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列各項(xiàng)為非負(fù)實(shí)數(shù),前n項(xiàng)和為,且
(1)求數(shù)列的通項(xiàng)公式;
(2)當(dāng)時(shí),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,對任意滿足,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊答案