16.已知函數(shù)f(x)=x3-6ax2,其中a≥0.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

分析 (1)求導(dǎo)數(shù),確定切線的斜率、切點(diǎn)的坐標(biāo),即可求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)先求導(dǎo),通過(guò)討論a的取值,討論函數(shù)的單調(diào)性.

解答 解:(1)當(dāng)a=1時(shí),f(x)=x3-6x2,f′(x)=3x(x-4),
∴f′(1)=-9,f(1)=-5,
∴曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程y-5=-9(x-1),
即9x+y-14=0;
(2)f'(x)=3x2-12ax.
令f'(x)=0,得x1=0,x2=4a.
①當(dāng)a=0時(shí),f'(x)=3x2≥0,故f(x)在R上為增函數(shù).
②當(dāng)4a>0,即a>0時(shí),列表分析如下:

x(-∞,0)0(0,4a)4a(4a,+∞)
f'(x)+0-0+
所以函數(shù)f(x)在(-∞,0)和(4a,+∞)內(nèi)單調(diào)遞增,在(0,4a)內(nèi)單調(diào)遞減.
綜上,當(dāng)a=0時(shí),f(x)在R上單調(diào)遞增;當(dāng)a>0時(shí),f(x)在(-∞,0)和(4a,+∞)內(nèi)單調(diào)遞增,在(0,4a)內(nèi)單調(diào)遞減.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查導(dǎo)數(shù)的幾何意義.對(duì)應(yīng)含有參數(shù)的函數(shù)的單調(diào)性要對(duì)參數(shù)進(jìn)行討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)函數(shù)f(x)=lnx+$\frac{m}{x}$,m∈R,若對(duì)任意x2>x1>0,f(x2)-f(x1)<x2-x1恒成立,則實(shí)數(shù)m的取值范圍是[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點(diǎn)P在棱DF上.
(1)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;
(2)若二面角D-AP-C的正弦值為$\frac{\sqrt{6}}{3}$,求PF的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$\overrightarrow{e}$1,$\overrightarrow{e}$2為平面上的單位向量,$\overrightarrow{e}$1與$\overrightarrow{e}$2的起點(diǎn)均為坐標(biāo)原點(diǎn)O,$\overrightarrow{e}$1與$\overrightarrow{e}$2夾角為$\frac{π}{3}$.平面區(qū)域D由所有滿足$\overrightarrow{OP}$=λ$\overrightarrow{e}$1+μ$\overrightarrow{e}$2的點(diǎn)P組成,其中$\left\{{\begin{array}{l}{λ+μ≤1}\\{0≤λ}\\{0≤μ}\end{array}}\right.$,那么平面區(qū)域D的面積為( 。
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=(2a+1)x-ax2-(a+1)-lnx,其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的極值;
(Ⅱ)當(dāng)x≥1時(shí),f(x)≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,己知直線l的極坐標(biāo)方程為ρcosθ-ρsinθ=2,曲線C的極坐標(biāo)方程為ρsin2θ=2pcosθ(p>0).
(1)設(shè)t為參數(shù),若x=-2+$\frac{\sqrt{2}}{2}$t,求直線l的參數(shù)方程;
(2)已知直線l與曲線C交于P、Q,設(shè)M(-2,-4),且|PQ|2=|MP|•|MQ|,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)f(x)=x3+ax2+bx+1的導(dǎo)函數(shù)f′(x)滿足f′(x)=2a,f′(2)=-b,
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè)g(x)=f′(x)ex,求函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知點(diǎn)P(-1+$\sqrt{2}$cosα,$\sqrt{2}$sinα)(其中α∈[0,2π)),點(diǎn)P的軌跡記為曲線C1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)Q在曲線C2:ρ=$\frac{1}{{\sqrt{2}cos(θ+\frac{π}{4})}}$上.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)當(dāng)ρ≥0,0≤θ<2π時(shí),求曲線C1與曲線C2的公共點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,側(cè)棱PA=PC=PD=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2.
(1)求證:側(cè)面PAD⊥底面ABCD;
(2)求三棱錐P-ACD的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案