2.以C(2,-1)為圓心,2$\sqrt{3}$為直徑的圓的標(biāo)準(zhǔn)方程是( 。
A.(x+2)2+(y-1)2=12B.(x-2)2+(y+1)2=12C.(x-2)2+(y+1)2=3D.(x+2)2+(y-1)2=3

分析 由圓心的坐標(biāo)和半徑寫出圓的標(biāo)準(zhǔn)方程即可.

解答 解:由圓心坐標(biāo)為(2,-1),半徑r=$\sqrt{3}$,
則圓的標(biāo)準(zhǔn)方程為:(x-2)2+(y+1)2=3.
故選:C.

點評 本題考查學(xué)生會根據(jù)圓心坐標(biāo)和圓的半徑寫出圓的標(biāo)準(zhǔn)方程,是一道比較簡單的題.要求學(xué)生掌握當(dāng)圓心坐標(biāo)為(a,b),半徑為r時,圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a為實數(shù),則下列不等式一定不成立的是(  )
A.2a>4aB.2lga<lgaC.a2+|a|≤0D.|a+$\frac{1}{a}}$|<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.${∫}_{0}^{\frac{π}{2}}$(1+sinx)dx=$\frac{π}{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足4bsinA=$\sqrt{7}$a,若a,b,c成等差數(shù)列,且公差大于0,則cosA-cosC的值為$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.以點F1(0,-4),F(xiàn)2(0,4)為焦點的橢圓,它的長軸長是10,則它的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.滿足條件|z-i|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點的軌跡是以i對應(yīng)的點為圓心,以5為半徑的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知y=sinx,則y′=cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求中心在原點,焦點在坐標(biāo)軸上,且經(jīng)過兩點P($\frac{1}{3}$,$\frac{1}{3}$),Q(0,-$\frac{1}{2}$)的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知θ為向量$\overrightarrow{a}$與$\overrightarrow$的夾角,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,關(guān)于x的一元二次方程x2-|$\overrightarrow{a}$|x+$\overrightarrow{a}$•$\overrightarrow$=0有實根.
(Ⅰ)求θ的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)f(θ)=sin(2θ+$\frac{π}{3}$)的最值及對應(yīng)的θ的值.

查看答案和解析>>

同步練習(xí)冊答案