(2007•南京二模)若A,B,C,D,E,F(xiàn)六個(gè)元素排成一列,要求A不排在兩端,且B,C相鄰,則不同的排法有(  )
分析:把B,C看做一個(gè)整體,有2種方法;6個(gè)元素變成了5個(gè),先在中間的3個(gè)位中選一個(gè)排上A,有A31=3種方法,其余的4個(gè)元素任意排,有A44種不同方法.根據(jù)分步計(jì)數(shù)原理求出所有不同的排法種數(shù).
解答:解:由于B,C相鄰,把B,C看做一個(gè)整體,有2種方法.這樣,6個(gè)元素變成了5個(gè).
先排A,由于A不排在兩端,則A在中間的3個(gè)位子中,有A31=3種方法.
其余的4個(gè)元素任意排,有A44種不同方法,
故不同的排法有 2×3×A44=144種,
故選D.
點(diǎn)評(píng):本題主要考查排列、組合以及簡(jiǎn)單計(jì)數(shù)原理的應(yīng)用,注意把特殊元素與位置優(yōu)先排列,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•南京二模)已知F為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn),直線l過(guò)點(diǎn)F且與雙曲線
x2
a2
-
y2
b2
=1
的兩條漸進(jìn)線l1,l2分別交于點(diǎn)M,N,與橢圓交于點(diǎn)A,B.
(Ⅰ)若∠MON=
π
3
,雙曲線的焦距為4.求橢圓方程.
(Ⅱ)若
OM
MN
=0
(O為坐標(biāo)原點(diǎn)),
FA
=
1
3
AN
,求橢圓的離心率e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•南京二模)已知全集U=R,且A={x|log2(x-2)<1},B={x|
x-3
x+1
>0}
,則A∩CUB等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•南京二模)設(shè)m,n為直線,α,β為平面,則m||α的一個(gè)充分條件是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•南京二模)(1-x)(2+x)6的展開(kāi)式中x4的系數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案