為漸近線,且經(jīng)過點的雙曲線標準方程是          

解析試題分析:漸近線為的雙曲線可設為,代入點
所以雙曲線為整理為
考點:雙曲線方程及性質
點評:雙曲線焦點在x軸時,漸近線方程為,焦點在y軸時,漸近線方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

下列關于圓錐曲線的命題:其中真命題的序號___________.(寫出所有真命題的序號)。
① 設為兩個定點,若,則動點的軌跡為雙曲線;
② 設為兩個定點,若動點滿足,且,則的最大值為8;
③ 方程的兩根可分別作橢圓和雙曲線的離心率;
④ 雙曲線與橢圓有相同的焦點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知雙曲線的離心率是,則         .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

設中心在原點的雙曲線與橢圓+y2=1有公共的焦點,且它們的離心率互為倒數(shù),則該雙曲線的方程是        

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

雙曲線的虛軸長是實軸長的2倍,則m等于             。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

橢圓(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1,F2.若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知橢圓C1的中心在原點、焦點在x軸上,拋物線C2的頂點在原點、焦點在x軸上。小明從曲線C1,C2上各取若干個點(每條曲線上至少取兩個點),并記錄其坐標(x,y)。由于記錄失誤,使得其中恰好有一個點既不在橢圓上C1上,也不在拋物線C2上。小明的記錄如下:

X
 
-2
 
-
 
0
 
2
 
2
 
3
 
Y
 
2
 
0
 

 
-2
 

 
-2
 
據(jù)此,可推斷橢圓C1的方程為           .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,在平面斜坐標系xOy中,,平面上任意一點P關于斜坐標系的斜坐標這樣定義:若(其中,分別是x軸,y軸正方向的單位向量),則P點的斜坐標為(x,y),向量的斜坐標為(x,y).給出以下結論:

①若,P(2,-1),則
②若,,則;
③若(x,y),,則;
④若,,則;
⑤若,以O為圓心,1為半徑的圓的斜坐標方程為
其中所有正確的結論的序號是______________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知雙曲線中心在原點且一個焦點為F(,0),直線與其相交于M、N兩點,MN中點的橫坐標為,則此雙曲線的方程是      .

查看答案和解析>>

同步練習冊答案