分析:(1)把a=1代入f(x)=x|x-a|+1,解方程f(x)=x即可求得結(jié)果;
(2)去絕對值符號,
f(x)=,對a分情況討論,0<a≤1時,函數(shù)y=f(x)在區(qū)間[1,2]上遞增,求出函數(shù)的最小值;當(dāng)1<a≤2時,f(x)
min=f(a)=1;
當(dāng)2<a<3時,x≤2<a,數(shù)f(x)
min=f(2)=2a-3;
(3)a>0時,求出函數(shù)在各段上的函數(shù)的最值和單調(diào)性,即可對a進行分類討論,即可求得結(jié)果.
解答:解:(1)當(dāng)a=1時,有x|x-1|+1=x
所以x=-1或x=1;
(2)
f(x)=,
1°.當(dāng)0<a≤1時,x≥1≥a,這時,f(x)=x
2-ax+1,對稱軸
x=≤<1,
所以函數(shù)y=f(x)在區(qū)間[1,2]上遞增,f(x)
min=f(1)=2-a;
2°.當(dāng)1<a≤2時,x=a時函數(shù)f(x)
min=f(a)=1;
3°.當(dāng)2<a<3時,x≤2<a,這時,f(x)=-x
2+ax+1,對稱軸
x=∈(1,),
f(1)=a,f(2)=2a-3,∵(2a-3)-a=a-3<0
所以函數(shù)f(x)
min=f(2)=2a-3;
(3)因為a>0,所以
a>,
所以y
1=x
2-ax+1在[a,+∞)上遞增;y
2=-x
2+ax+1在
(-∞,)遞增,在
[,a)上遞減.
因為f(a)=1,所以當(dāng)a=1時,函數(shù)y=f(x)的圖象與直線y=a有2個交點;
又
f()=+1≥2••1=a,當(dāng)且僅當(dāng)a=2時,等號成立.
所以,當(dāng)0<a<1時,函數(shù)y=f(x)的圖象與直線y=a有1個交點;
當(dāng)a=1時,函數(shù)y=f(x)的圖象與直線y=a有2個交點;
當(dāng)1<a<2時,函數(shù)y=f(x)的圖象與直線y=a有3個交點;
當(dāng)a=2時,函數(shù)y=f(x)的圖象與直線y=a有2個交點;
當(dāng)a>2時,函數(shù)y=f(x)的圖象與直線y=a有3個交點.