已知函數(shù)f(x)=
2x-1
2x+1

(1)判斷函數(shù)f(x)的奇偶性,并證明.
(2)求函數(shù)f(x)的單調(diào)性及值域.
考點:函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)f(x)的奇偶性,并證明.
(2)根據(jù)指數(shù)函數(shù)的性質(zhì)即可求函數(shù)f(x)的單調(diào)性及值域.
解答: 解:(1)函數(shù)的定義域為R,
則f(-x)=
2-x-1
2-x+1
=
1-2x
1+2x
=-
2x-1
2x+1
=-f(x),
即函數(shù)f(x)為奇函數(shù).
(2)f(x)=
2x-1
2x+1
=1-
2
2x+1
,
∵y=2x為增函數(shù),∴y=2x+1為增函數(shù),
則f(x)=
2x-1
2x+1
=1-
2
2x+1
為增函數(shù),
由y=f(x)=
2x-1
2x+1
得(1-y)2x=1+y,
當y=1時,不成立,則方程等價為2x=
1+y
1-y
,
由2x=
1+y
1-y
>0,解得-1<y<1,
故函數(shù)的值域為(-1,1).
點評:本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,利用指數(shù)函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=
2
,BC=1,cosC=
3
4

(1)求sinA的值;
(2)求
CB
CA
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|2<x<9},集合B={x|-1≤x≤6},求:
(1)A∪∁uB;
(2)∁u(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)f(x)的圖象經(jīng)過點A(4,
1
16
),則該函數(shù)的解析式為(  )
A、f(x)=x2
B、f(x)=x-2
C、f(x)=x4
D、f(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不用計算器求值:
(1)log3
1
3
+lg25+lg4+7log72
;
(2)(
32
×
3
)6+(
2
2
)
4
3
-4(
16
49
)-
1
2
+20150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2x-2
+
1
lg(x-1)
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-4x-5≥0},集合B={x|2a≤x≤a+2}.
(1)若a=-1,求A∩B和A∪B;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=log23,b=log
1
2
5
,c=(
1
2
)0.3
則( 。
A、a<b<c
B、a<c<b
C、b<c<a
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2ex+1
ex+1
,g(x)=ln(x+
1+x2
).
(1)求證:對任意實數(shù)x,f(x)+f(-x)與g(x)+g(-x)均為定值;
(2)令F(x)=f(x)+g(x),試說明F(x)的單調(diào)性,再求F(x)在區(qū)間[-3,3]的最大值與最小值之和.

查看答案和解析>>

同步練習(xí)冊答案