【題目】已知函數(shù)
(1)求f(x)的極值;
(2)當(dāng)0<x<e時(shí),求證:f(e+x)>f(e﹣x);
(3)設(shè)函數(shù)f(x)圖象與直線y=m的兩交點(diǎn)分別為A(x1 , f(x1)、B(x2 , f(x2)),中點(diǎn)橫坐標(biāo)為x0 , 證明:f'(x0)<0.

【答案】
(1)解:f′(x)= ,f(x)的定義域是(0,+∞),

x∈(0,e)時(shí),f′(x)>0,f(x)單調(diào)遞增;

x∈(e,+∞)時(shí),f'(x)<0,f(x)單調(diào)遞減.

當(dāng)x=e時(shí),f(x)取極大值為 ,無極小值


(2)解:要證f(e+x)>f(e﹣x),即證:

只需證明:(e﹣x)ln(e+x)>(e+x)ln(e﹣x).

設(shè)F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),

,

∴F(x)>F(0)=0,

故(e﹣x)ln(e+x)>(e+x)ln(e﹣x),

即f(e+x)>f(e﹣x)


(3)解:證明:不妨設(shè)x1<x2,由(1)知0<x1<e<x2,∴0<e﹣x1<e,

由(2)得f[e+(e﹣x1)]>f[e﹣(e﹣x1)]=f(x1)=f(x2),

又2e﹣x1>e,x2>e,且f(x)在(e,+∞)上單調(diào)遞減,

∴2e﹣x1<x2,即x1+x2>2e,

,∴f'(x0)<0


【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的極值即可;(2)問題轉(zhuǎn)化為證明(e﹣x)ln(e+x)>(e+x)ln(e﹣x),設(shè)F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),根據(jù)函數(shù)的單調(diào)性證明即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假定某射手射擊一次命中目標(biāo)的概率為.現(xiàn)有4發(fā)子彈,該射手一旦射中目標(biāo),就停止射擊,否則就一直獨(dú)立地射擊到子彈用完.設(shè)耗用子彈數(shù)為X,求:

(1)X的概率分布;

(2)數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市電視臺(tái)為了宣傳舉辦問答活動(dòng),隨機(jī)對該市15~65歲的人群抽樣了人,回答問題計(jì)結(jié)果如下圖表所示:

1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?

(3)在(2)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系xoy中,橢圓的離心率為,過點(diǎn).

(1)求橢圓C的方程;

(2)已知點(diǎn)P(2,1),直線與橢圓C相交于A,B兩點(diǎn),且線段AB被直線OP平分.

①求直線的斜率;②若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn),和直線相切,且圓心在直線上.

(1)求圓的方程;

(2)已知直線經(jīng)過原點(diǎn),并且被圓截得的弦長為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中t∈R.

(1)當(dāng)t=1時(shí),求曲線在點(diǎn)處的切線方程;

(2)當(dāng)t≠0時(shí),求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在等腰梯形,,垂足為,.將沿折起到的位置,使平面平面,如圖2所示,點(diǎn)為棱的中點(diǎn).

1)求證:平面;

2)求證:平面

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.

(1)求袋中原有白球的個(gè)數(shù);

(2)求取球兩次終止的概率

(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

頻數(shù)

1

3

2

4

9

26

5

使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

頻數(shù)

1

5

13

10

16

5

(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:

2)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;

3)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.)

查看答案和解析>>

同步練習(xí)冊答案