分析 (1)利用倍角公式、和差公式可得f(x)=sin(2x-$\frac{π}{6}$),再利用三角函數(shù)的周期公式求得該函數(shù)的最小正周期;
(2)依據(jù)正弦函數(shù)的對(duì)稱性即可得出.
解答 解:(1)f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=sin(2x-$\frac{π}{6}$),
故T=$\frac{2π}{2}$=π.
(2)由(1)知,f(x)=sin(2x-$\frac{π}{6}$),
則令2x-$\frac{π}{6}$=kπ(k∈Z)得x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈Z),
故對(duì)稱中心為($\frac{π}{12}$+$\frac{kπ}{2}$,0)(k∈Z).
點(diǎn)評(píng) 本題考查了倍角公式、和差公式三角函數(shù)的周期公式、正弦函數(shù)的對(duì)稱性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2] | B. | [1,2) | C. | [-1,1] | D. | [-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=1,b=0 | B. | a=-1,b=-1 | ||
C. | a=1,b=0或a=-1,b=-1 | D. | 以上答案均不正確 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com