3.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的對(duì)稱中心坐標(biāo).

分析 (1)利用倍角公式、和差公式可得f(x)=sin(2x-$\frac{π}{6}$),再利用三角函數(shù)的周期公式求得該函數(shù)的最小正周期;
(2)依據(jù)正弦函數(shù)的對(duì)稱性即可得出.

解答 解:(1)f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=sin(2x-$\frac{π}{6}$),
故T=$\frac{2π}{2}$=π.
(2)由(1)知,f(x)=sin(2x-$\frac{π}{6}$),
則令2x-$\frac{π}{6}$=kπ(k∈Z)得x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈Z),
故對(duì)稱中心為($\frac{π}{12}$+$\frac{kπ}{2}$,0)(k∈Z).

點(diǎn)評(píng) 本題考查了倍角公式、和差公式三角函數(shù)的周期公式、正弦函數(shù)的對(duì)稱性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,B=120°,AB=$\sqrt{2}$,AC=$\sqrt{6}$,則A的角平分線AD,則AD=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+$\frac{4}{{x}^{2}}$.
(1)求證:f(x)是偶函數(shù);
(2)判斷函數(shù)f(x)在(0,$\sqrt{2}$)和($\sqrt{2}$,+∞)上的單調(diào)性并用定義法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知高為5的四棱錐的俯視圖是如圖所示的矩形,則該四棱錐的體積為( 。
A.24B.80C.64D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若方程2sin(x+$\frac{π}{6}$)-a=0在區(qū)間[0,π]存在兩個(gè)不等實(shí)根,則a的取值范圍是(  )
A.[1,2]B.[1,2)C.[-1,1]D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|2x+1|+|2x-3|.
(1)求不等式f(x)≤6的解集;
(2)已知a>0,若關(guān)于x的不等式f(x)<|a-2|的解集非空,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線($\sqrt{6}$sinθ)x+$\sqrt{3}$y-2=0的傾斜角為θ(θ≠0),則θ=$\frac{3π}{4}$(或135°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若二次函數(shù)y=ax2+4x-2有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是a>-2且a≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=ax2-2ax+b(a≠0)在閉區(qū)間[1,2]上有最大值0,最小值-1,則a,b的值為( 。
A.a=1,b=0B.a=-1,b=-1
C.a=1,b=0或a=-1,b=-1D.以上答案均不正確

查看答案和解析>>

同步練習(xí)冊(cè)答案