20.在復(fù)平面內(nèi),復(fù)數(shù)z=(a2-2a)+(a2-a-2)i對(duì)應(yīng)的點(diǎn)在虛軸上,則實(shí)數(shù)a的值為(  )
A.0B.1C.2D.0或2

分析 利用復(fù)數(shù)的運(yùn)算性質(zhì)和幾何意義即可得出.

解答 解:∵復(fù)數(shù)z=(a2-2a)+(a2-a-2)i在復(fù)平面上對(duì)應(yīng)的點(diǎn)在虛軸上,∴a2-2a=0,解得a=2或a=0.當(dāng)a=2時(shí),a2-a-2=0.
故選:A.

點(diǎn)評(píng) 熟練掌握復(fù)數(shù)的運(yùn)算性質(zhì)和幾何意義是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知角α的終邊經(jīng)過(guò)點(diǎn)P(-2,1),求值$\frac{1}{sin2α}$=-$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=-x3+ax在(1,+∞)上是單調(diào)函數(shù),則a的取值范圍為( 。
A.a≤0B.a<0C.a≤3D.a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若函數(shù)$f(x)=\frac{{3{x^2}+ax}}{e^x}$在x=0處取得極值,則a的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若$\overrightarrow{a}$=(x,2),$\overrightarrow$=(-3,6),且$\overrightarrow{a}$與$\overrightarrow$的夾角是銳角,則實(shí)數(shù)x的取值范圍是{x|x<4,且x≠-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知長(zhǎng)方體AC1中,棱AB=BC=1,棱BB1=2,連結(jié)B1C,過(guò)B點(diǎn)作B1C的垂線交CC1于E,交AC于F.
(1)求證:A1C⊥面EBD;
(2)求四棱錐A-A1B1CD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若α=-5,則角α的終邊在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)求$\frac{1}{S_1}+\frac{1}{S_2}$+$\frac{1}{S_3}$+…+$\frac{1}{{{S_{100}}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(2,$\frac{{2\sqrt{5}}}{5}$)在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),圓O:x2+y2=a2,B1(0,-b),B2(0,b),E為橢圓C上異于頂點(diǎn)的任意一點(diǎn),點(diǎn)F在圓O上,且EF⊥x軸,E與F在x軸兩側(cè),直線EB1,EB2分別與x軸交于點(diǎn)G,H,求證:∠GFH為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案