【題目】已知數(shù)列滿足.
(1)求證:數(shù)列是等比數(shù)列,并求的通項公式;
(2)記數(shù)列的前項和,求使得成立的最小整數(shù).
【答案】(1)證明見解析,;(2).
【解析】
試題分析:(1)由利用等比數(shù)列的定義證明即可,需要利用整理化簡,數(shù)列就以不首項,公比為的等比數(shù)列,由此能夠求出數(shù)列的通項公式;(2)利用分組求和法得,由眥能求出使得成立的最小整數(shù).
試題解析:(1)證明:∵,∴,
∴為常數(shù),
又,
∴是以3為首項,2為公比的等比數(shù)列,...........................3分
∴,
∴,
疊加得,
∴,即................6分
(2)由(1)得,
∴,..............10分
∴,即為,
∴,∵,
∴,∴最小整數(shù)為4............................12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓與軸,軸的正半軸分別交于兩點,原點到直線的距離為,該橢圓的離心率為.
(1)求橢圓的方程;
(2)過點的直線與橢圓交于兩個不同的點,求線段的垂直平分線在軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四棱錐中,底面是正方形,.
(1)如圖2,設(shè)點為的中點,點為的中點,求證: 平面;
(2)已知網(wǎng)格紙上小正方形的邊長為,請你在網(wǎng)格紙上用粗線畫圖1中四棱錐的府視圖(不需要標(biāo)字母),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的焦點,過右焦點的直線與 相交于兩點,若的周長為短軸長的倍.
(1)求的離心率;
(2)設(shè)的斜率為,在上是否存在一點,使得?若存在,求出點的坐標(biāo); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市要建成宜商、宜居的國際化新城,該城市的東城區(qū)、西城區(qū)分別引進8個廠家,現(xiàn)對兩個區(qū)域的16個廠家進行評估,綜合得分情況如莖葉圖所示.
(1)根據(jù)莖葉圖判斷哪個區(qū)域廠家的平均分較高;
(2)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個區(qū)域各選一個優(yōu)秀廠家,求得分差距不超過5分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲(單位:)與它的“相近”作物株數(shù)之間的關(guān)系如下表所示:
1 | 2 | 3 | 4 | |
51 | 48 | 45 | 42 |
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)從三角形地塊的內(nèi)部和邊界上分別隨機選取一株作物,求它們恰好“相近”的概率;
(2)在所種作物中堆積選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,點.
(1)設(shè)是橢圓上任意的一點,是點關(guān)于坐標(biāo)原點的對稱點,記,求的取值范圍;
(2)已知點,,是橢圓上在第一象限內(nèi)的點,記為經(jīng)過原點與點的直線,為截直線所得的線段長,試將表示成直線的斜率的函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為原點,A,B,C為平面內(nèi)的三點.求證:
(1) 若A,B,C三點共線,則存在實數(shù)α,β,且α+β=1,
(2) 若存在實數(shù)α,β,且α+β=1,使得,則A,B,C三點共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com