2.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x={t}^{2}+\frac{1}{{t}^{2}}-3}\\{y=2(t-\frac{1}{t})}\end{array}\right.$(t為參數(shù))
(1)將曲線C的參數(shù)方程化為普通方程;
(2)以原點為極點,x軸正方向為極軸,建立極坐標(biāo)系,寫出曲線C的極坐標(biāo)方程.

分析 (1)分別用x,y表示出t2+$\frac{1}{{t}^{2}}$,t+$\frac{1}{t}$,利用完全平方公式消t得出x,y的關(guān)系,即曲線C的普通方程;
(2)將x=ρcosθ,y=ρsinθ代入普通方程得出極坐標(biāo)方程.

解答 解:(1)由x=t2+$\frac{1}{{t}^{2}}$-3得t2+$\frac{1}{{t}^{2}}$=(t-$\frac{1}{t}$)2+2=x+3,
由y=2(t-$\frac{1}{t}$)得t-$\frac{1}{t}$=$\frac{y}{2}$,
∴曲線C的普通方程為($\frac{y}{2}$)2+2=x+3,即y2=4(x+1).
(2)∵x=ρcosθ,y=ρsinθ,
∴曲線C的極坐標(biāo)方程是ρ2sin2θ=4(ρcosθ+1).

點評 本題考查了參數(shù)方程,極坐標(biāo)方程與普通方程的轉(zhuǎn)化,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知過定點P(2,0)的直線l與曲線$y=\sqrt{2-{x^2}}$相交于A,B兩點,O為坐標(biāo)原點,當(dāng)△AOB的面積最大時,直線l的傾斜角為(  )
A.150°B.135°C.120°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.向量|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}$+$\overrightarrow$)(2$\overrightarrow{a}$-$\overrightarrow$)=-1,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如果復(fù)數(shù)z滿足|z|=1且z2=a+bi,其中a,b∈R,則a+b的最大值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow$=(1,cosθ),若$\overrightarrow{a}$∥$\overrightarrow$,則tanθ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)兩條直線的方程分別為x+$\sqrt{3}$y+a=0,x+$\sqrt{3}$y+b=0,已知a,b是方程x2+2x+c=0的兩個實根,且0≤c≤$\frac{1}{2}$,則這兩條直線之間的距離的最大值和最小值的差為(  )
A.$\frac{{2-\sqrt{2}}}{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{4-\sqrt{14}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)集合A={1,2,3,5},B={2,3,6},則A∪B={1,2,3,5,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0)的部分圖象如圖所示,則f($\frac{19π}{6}$)的值為(  )
A.0B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{x+y≤5}\\{2x-y≤2}\end{array}\right.$若z=y+mx有最大值12,則實數(shù)m的取值為( 。
A.-4B.-8C.8D.4

查看答案和解析>>

同步練習(xí)冊答案