(2011•昌平區(qū)二模)在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=cosθ
y=sinθ+m
(θ是參數(shù),m是常數(shù)),曲線C的對(duì)稱中心是
(0,m)
(0,m)
,若曲線C與y軸相切,則m=
±1
±1
分析:曲線C的普通方程為:x2+(y-m)2=1,是以(0,m)為圓心的圓,曲線的對(duì)稱中心即為圓的圓心;曲線C與y軸相切,可得|m|=1,從而可求m
解答:解:由已知曲線C的參數(shù)方程是
x=cosθ
y=sinθ+m

普通方程為:x2+(y-m)2=1
曲線C是以(0,m)為圓心的圓,故曲線的對(duì)稱中心為(0,m)
若曲線C與y軸相切,則|m|=1,m=±1
故答案為:(0,m);±1
點(diǎn)評(píng):本小題主要考查圓的參數(shù)方程及直線與圓的普通方程的互化,直線與圓的位置關(guān)系的應(yīng)用,以及轉(zhuǎn)化與化歸的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•昌平區(qū)二模)已知集合A={x|x≥3},B={1,2,3,4},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•昌平區(qū)二模)一個(gè)正方形的內(nèi)切圓半徑為2,向該正方形內(nèi)隨機(jī)投一點(diǎn)P,點(diǎn)P恰好落在圓內(nèi)的概率是
π
4
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•昌平區(qū)二模)如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點(diǎn)E為AB的中點(diǎn).
(1)求證:BD1∥平面A1DE;
(2)求證:D1E⊥A1D;
(3)在線段AB上是否存在點(diǎn)M,使二面角D1-MC-D的大小為
π6
?若存在,求出AM的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•昌平區(qū)二模)已知集合A={x|x≥3},B={x|(x-2)(x-4)<0},則A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•昌平區(qū)二模)若不等式組
x+2y-5≤0
x≥1
y≥1
表示的平面區(qū)域是一個(gè)三角形,則此三角形的面積是
1
1
;若x,y滿足上述約束條件,則z=x-y的最大值是
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案