【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時, f(x)=-x+1

(1)求f(0),f(2);

(2)求函數(shù)f(x)的解析式;

(3)若f(a-1)<3,求實數(shù)a的取值范圍.

【答案】(1)3; (2); (3)(-1,3).

【解析】

(1 )代入解析式可得,利用函數(shù)奇偶性的性質(zhì)即可求的值; (2),,求得,根據(jù)函數(shù)奇偶性的性質(zhì)即可求函數(shù))的解析式;(3) 根據(jù)函數(shù)的奇偶性與單調(diào)性,將不等式轉(zhuǎn)化為,利用絕對值不等式的解法可求實數(shù)的取值范圍.

(1)因為當x≤0時,f(x)=-x+1所以f(0)=1.

又函數(shù)f(x)是定義在R上的偶函數(shù),所以

f(2)=f(-2)=—(-2)+1=3,即f(2)=3.

(2)令x>0,則-x<0,

從而f(-x)=x+1=f(x),

∴x>0時,f(x)=x+1

∴函數(shù)f(x)的解析式為

,

(3)由函數(shù)圖像可得

∴f(x)=-x+1在(-∞,0]上為減函數(shù).

又f(x)是定義在R上的偶函數(shù),

∴f(x)在(0,+∞)上為增函數(shù).

∵f(a-1)<3=f(2),∴|a-1|<2,解得-1<a<3.

故實數(shù)a的取值范圍為(-1,3).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),則下列結(jié)論錯誤的是( )

A. 是偶函數(shù) B. 的值域是

C. 方程的解只有 D. 方程的解只有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在直角坐標系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為 . (Ⅰ)求圓C的普通方程和直線l的直角坐標方程;
(Ⅱ)設(shè)M是直線l上任意一點,過M做圓C切線,切點為A、B,求四邊形AMBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).

(I)求f(0)的值和實數(shù)m的值;

(II)當m=1時,判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明;

(III)若且f(b﹣2)+f(2b﹣2)>0,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實數(shù)a,當x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為2的菱形, , 為平面外一點,且底面上的射影為四邊形的中心, , 上一點,

(Ⅰ)若上一點,且,求證: 平面;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市“金牛”公園欲在長、寬分別為 、的矩形地塊內(nèi)開鑿一“撻圓”形水池(如圖),池邊由兩個半橢圓)組成,其中,“撻圓”內(nèi)切于矩形且其左右頂點 和上頂點構(gòu)成一個直角三角形

(1)試求“撻圓”方程;

(2)若在“撻圓”形水池內(nèi)建一矩形網(wǎng)箱養(yǎng)殖觀賞魚,則該網(wǎng)箱水面面積最大為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,其左頂點A在圓O:x2+y2=16上. (Ⅰ)求橢圓W的方程;
(Ⅱ)若點P為橢圓W上不同于點A的點,直線AP與圓O的另一個交點為Q.是否存在點P,使得 ?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案