【題目】袋中裝有圍棋黑色和白色棋子共7枚,從中任取2枚棋子都是白色的概率為. 現(xiàn)有甲、乙兩人從袋中輪流摸取一枚棋子.甲先摸,乙后取,然后甲再取,……,取后均不放回,直到有一人取到白棋即終止. 每枚棋子在每一次被摸出的機會都是等可能的.用表示取棋子終止時所需的取棋子的次數(shù).
(1)求隨機變量的概率分布列和數(shù)學期望;
(2)求甲取到白棋的概率.
【答案】(1)見解析;(2).
【解析】試題分析:(1)先出白子個數(shù),進而可得隨機變量的所有可能取值是1,2,3,4,5,分別求出各隨機變量的概率,從而可得分布列,由期望公式可得結果;(2)記事件 “甲取到白球”,則事件包括以下三個互斥事件: “甲第一次取球時取出白球”; “甲第二次取球時取出白球”; “甲第三次取球時取出白球”. 利用互斥事件概率加法公式,可得:甲取到白球的概率.
試題解析:設袋中白棋共有個,,則依題意知:,∴,
即 ,解之得(舍去).
(1)袋中的7枚棋子3白4黑,隨機變量的所有可能取值是1,2,3,4,5.
,,,
,.
(注:此段4分的分配是每錯1個扣1分,錯到4個即不得分.)
隨機變量的概率分布列為:
1 | 2 | 3 | 4 | 5 | |
所以.
(2)記事件“甲取到白棋”,則事件包括以下三個互斥事件:
“甲第1次取棋時取出白棋”;
“甲第2次取棋時取出白棋”;
“甲第3次取棋時取出白棋”.
依題意知:,,,
(注:此段3分的分配是每錯1個扣1分,錯到3個即不得分.)
所以,甲取到白棋的概率為
科目:高中數(shù)學 來源: 題型:
【題目】已知 a∈R,函數(shù) f(x)=a﹣ .
(1)證明:f(x)在(﹣∞,+∞)上單調(diào)遞增;
(2)若f(x)為奇函數(shù),求:
①a的值;
②f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù) ,且其圖象關于直線x=0對稱,則( )
A.y=f(x)的最小正周期為π,且在(0, )上為增函數(shù)
B.y=f(x)的最小正周期為π,且在(0, )上為減函數(shù)
C.y=f(x)的最小正周期為 ,且在 上為增函數(shù)
D.y=f(x)的最小正周期為 ,且在 上為減函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率為, 過點, 記橢圓的左頂點為.
(1)求橢圓的方程;
(2)設垂直于軸的直線交橢圓于兩點, 試求面積的最大值;
(3)過點作兩條斜率分別為的直線交橢圓于兩點,且, 求證: 直線恒過一個定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或下滿6局時停止.設甲在每局中獲勝的概率為p(p> ),且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為 .
(1)求p的值;
(2)設ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列和數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了探索一種新的教學模式,進行了一項課題實驗,甲班為實驗班,乙班為對比班,甲乙兩班的人數(shù)均為50人,一年后對兩班進行測試,測試成績的分組區(qū)間為[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到兩個班測試成績的頻率分布直方圖:
(1)完成下面2×2列聯(lián)表,你能有97.5%的把握認為“這兩個班在這次測試中成績的差異與實施課題實驗有關”嗎?并說明理由;
成績小于100分 | 成績不小于100分 | 合計 | |
甲班 | a= | b= | 50 |
乙班 | c=24 | d=26 | 50 |
合計 | e= | f= | 100 |
(2)現(xiàn)從乙班50人中任意抽取3人,記ξ表示抽到測試成績在[100,120)的人數(shù),求ξ的分布列和數(shù)學期望Eξ.
附:K2= ,其中n=a+b+c+d
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.204 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}當n≥2時滿足 = + ,且a3a5a7= , + + =9,Sn是數(shù)列{ }的前n項和,則S4= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當m≥1時,討論函數(shù)f(x)與g(x)圖象的交點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com