【題目】袋中裝有圍棋黑色和白色棋子共7枚,從中任取2枚棋子都是白色的概率為. 現(xiàn)有甲、乙兩人從袋中輪流摸取一枚棋子.甲先摸,乙后取,然后甲再取,……,取后均不放回,直到有一人取到白棋即終止. 每枚棋子在每一次被摸出的機會都是等可能的.表示取棋子終止時所需的取棋子的次數(shù).

(1)求隨機變量的概率分布列和數(shù)學期望

(2)求甲取到白棋的概率.

【答案】(1)見解析;(2).

【解析】試題分析:(1)先出白子個數(shù),進而可得隨機變量的所有可能取值是1,2,3,4,5,分別求出各隨機變量的概率,從而可得分布列,由期望公式可得結果;(2)記事件甲取到白球,則事件包括以下三個互斥事件: 甲第一次取球時取出白球 甲第二次取球時取出白球”;甲第三次取球時取出白球”. 利用互斥事件概率加法公式,可得:甲取到白球的概率.

試題解析:設袋中白棋共有個,,則依題意知:,∴

,解之得舍去).

(1)袋中的7枚棋子34黑,隨機變量的所有可能取值是1,2,3,4,5.

,,

,.

(注:此段4分的分配是每錯1個扣1分,錯到4個即不得分.)

隨機變量的概率分布列為:

1

2

3

4

5

所以.

(2)記事件甲取到白棋”,則事件包括以下三個互斥事件:

“甲第1次取棋時取出白棋”;

“甲第2次取棋時取出白棋”;

“甲第3次取棋時取出白棋”.

依題意知:,

(注:此段3分的分配是每錯1個扣1分,錯到3個即不得分.)

所以,甲取到白棋的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知 a∈R,函數(shù) f(x)=a﹣
(1)證明:f(x)在(﹣∞,+∞)上單調(diào)遞增;
(2)若f(x)為奇函數(shù),求:
①a的值;
②f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司13個部門接受的快遞的數(shù)量如莖葉圖所示,則這13個部門接收的快遞的數(shù)量的中位數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,且其圖象關于直線x=0對稱,則(
A.y=f(x)的最小正周期為π,且在(0, )上為增函數(shù)
B.y=f(x)的最小正周期為π,且在(0, )上為減函數(shù)
C.y=f(x)的最小正周期為 ,且在 上為增函數(shù)
D.y=f(x)的最小正周期為 ,且在 上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的離心率為, 過點, 記橢圓的左頂點為.

(1)求橢圓的方程;

(2)設垂直于軸的直線交橢圓于兩點, 試求面積的最大值;

(3)過點作兩條斜率分別為的直線交橢圓于兩點,且, 求證: 直線恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或下滿6局時停止.設甲在每局中獲勝的概率為p(p> ),且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
(1)求p的值;
(2)設ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列和數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了探索一種新的教學模式,進行了一項課題實驗,甲班為實驗班,乙班為對比班,甲乙兩班的人數(shù)均為50人,一年后對兩班進行測試,測試成績的分組區(qū)間為[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到兩個班測試成績的頻率分布直方圖:

(1)完成下面2×2列聯(lián)表,你能有97.5%的把握認為“這兩個班在這次測試中成績的差異與實施課題實驗有關”嗎?并說明理由;

成績小于100分

成績不小于100分

合計

甲班

a=

b=

50

乙班

c=24

d=26

50

合計

e=

f=

100


(2)現(xiàn)從乙班50人中任意抽取3人,記ξ表示抽到測試成績在[100,120)的人數(shù),求ξ的分布列和數(shù)學期望Eξ.
附:K2= ,其中n=a+b+c+d

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.204

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}當n≥2時滿足 = + ,且a3a5a7= , + + =9,Sn是數(shù)列{ }的前n項和,則S4=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當m≥1時,討論函數(shù)f(x)與g(x)圖象的交點個數(shù).

查看答案和解析>>

同步練習冊答案