【題目】某公司13個部門接受的快遞的數(shù)量如莖葉圖所示,則這13個部門接收的快遞的數(shù)量的中位數(shù)為 .
【答案】10
【解析】解:由莖葉圖的性質(zhì)得:
某公司13個部門接受的快遞的數(shù)量按從小到大的順序排的第7個數(shù)為中位數(shù),
∵第7個數(shù)是10,
∴這13個部門接收的快遞的數(shù)量的中位數(shù)為10.
所以答案是:10.
【考點精析】解答此題的關(guān)鍵在于理解平均數(shù)、中位數(shù)、眾數(shù)的相關(guān)知識,掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
在直角坐標系中圓C的參數(shù)方程為(為參數(shù)),以原點O為極點, 軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為
(1)求圓C的直角坐標方程及其圓心C的直角坐標;
(2)設(shè)直線與曲線交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).
(1)求的解析式及單調(diào)遞減區(qū)間;
(2)是否存在常數(shù),使得對于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.
(1)求二面角的余弦值;
(2)設(shè)是棱上一點,是的中點,若與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣ ,g(x)= sin2x.
(1)求函數(shù)f(x)與g(x)圖象交點的橫坐標;
(2)若函數(shù)φ(x)= ﹣f(x)﹣g(x),將函數(shù)φ(x)圖象上的點縱坐標不變,橫坐標擴大為原來的4倍,再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)h(x),求h(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱臺中, 與分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , , 為中點, (, ).
(1)設(shè)中點為, ,求證: 平面;
(2)若到平面的距離為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有圍棋黑色和白色棋子共7枚,從中任取2枚棋子都是白色的概率為. 現(xiàn)有甲、乙兩人從袋中輪流摸取一枚棋子.甲先摸,乙后取,然后甲再取,……,取后均不放回,直到有一人取到白棋即終止. 每枚棋子在每一次被摸出的機會都是等可能的.用表示取棋子終止時所需的取棋子的次數(shù).
(1)求隨機變量的概率分布列和數(shù)學(xué)期望;
(2)求甲取到白棋的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
極坐標系的極點在平面直角坐標系的原點處,極軸與軸的正半軸重合,兩坐標系單位長度相同.已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù))。
(Ⅰ)將直線的參數(shù)方程化為普通方程,曲線的極坐標方程化為直角坐標方程;
(Ⅱ)設(shè)曲線上到直線的距離為的點的個數(shù)為,求的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com