20.已知直線l1:ax+4y-1=0,l2:x+ay-$\frac{1}{2}$=0,若l1∥l2,則實數(shù)a=-2.

分析 利用直線平行的性質求解.

解答 解:∵直線l1:ax+4y-1=0,l2:x+ay-$\frac{1}{2}$=0,
∴$\frac{a}{1}=\frac{4}{a}≠\frac{-1}{-\frac{1}{2}}$,
解得a=-2(a=2時,兩條直線重合,舍去).
故答案為:-2.

點評 本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意直線平行的性質的靈活運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.漳州市“網約車”的現(xiàn)行計價標準是:路程在2km以內(含2km)按起步價8元收取,超過2km后的路程按1.9元/km收取,但超過10km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85元).
(1)將某乘客搭乘一次“網約車”的費用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16km,他準備先乘一輛“網約車”行駛8km后,再換乘另一輛“網約車”完成余下行程,請問:他這樣做是否比只乘一輛“網約車”完成全部行程更省錢?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知命題q:?x∈R,cosx≤1,則¬q是(  )
A.?x∈R,cosx≥1B.?x∈R,cosx>1C.?x0∈R,cosx0≥1D.?x0∈R,cosx0>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設m,n是兩條不同的直線,α,β是兩個不同的平面,下列說法正確的是( 。
A.若m∥α,α∩β=n,則 m∥nB.若m∥α,m⊥n,則n⊥α
C.若m⊥α,n⊥α,則m∥nD.若m?α,n?β,α⊥β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.圓柱被一個平面截去一部分后與一個四棱錐組成的幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4π+8B.8π+16C.16π+16D.16π+48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在直三棱柱ABC-A1B1C1中,D,E分別是BC,A1B1的中點.
(1)求證:DE∥平面ACC1A1;
(2)設M為AB上一點,且AM=$\frac{1}{4}$AB,若直三棱柱ABC-A1B1C1的所有棱長均相等,求直線DE與直線A1M所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若$x∈({e,{e^2}}),a=lnx,b={({\frac{1}{2}})^{lnx}},c={e^{lnx}}$,則a,b,c的大小關系為(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.隨著經濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經驗,得到一個銷售季度內市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個銷售季度的市場需求量,T(單位:萬元)表示該電商下一個銷售季度內經銷該商品獲得的利潤.
(Ⅰ)視x分布在各區(qū)間內的頻率為相應的概率,求P(x≥120)
(Ⅱ)將T表示為x的函數(shù),求出該函數(shù)表達式;
(Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點值(組中值)代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如x∈[100,110),則取x=105,且x=105的概率等于市場需求量落入100,110)的頻率),求T的分布列及數(shù)學期望E(T).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若函數(shù)$f(x)={x^2}+ax+\frac{1}{x}$在$({\frac{1}{2}\;\;,\;\;1})$內任取兩個實數(shù)p,q,且p≠q,不等式$\frac{f(p)-f(q)}{p-q}>0$恒成立,則a的取值范圍是(  )
A.[-1,0]B.[-1,+∞)C.[0,3]D.[3,+∞)

查看答案和解析>>

同步練習冊答案