若f(x)=
2x-2(x≥0)
f(x+2)(x<0)
,向量
a
=(m,2),
b
=(2,3)相互垂直,則f(m)等于(  )
A、2
B、4
C、
1
4
D、
1
2
考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系,函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先利用向量互相垂直的性質(zhì)得到數(shù)量積為0,求得m,然后代入f(x)解析式求函數(shù)值.
解答: 解:因?yàn)橄蛄?span id="ysg00br" class="MathJye">
a
=(m,2),
b
=(2,3)相互垂直,
所以
a
b
=2m+6=0,解得m=-3,
所以f(-3)=f(-3+2)=f(-1)=f(-1+2)=f(1)=21-2=2-1=
1
2

故選D.
點(diǎn)評(píng):本題考查了垂直向量的數(shù)量積為0以及分段函數(shù)的函數(shù)值是求法;分段函數(shù)的函數(shù)值必須明確自變量所屬范圍,然后代入對(duì)應(yīng)的解析式求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,Sn是數(shù)列{an}的前n項(xiàng)和,a1+a6+a11=4π,則sin(S11)的值為( 。
A、
3
2
B、±
3
2
C、
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在定義域內(nèi)存在實(shí)數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)有“飄移點(diǎn)”x0
(1)函數(shù)f(x)=
1
x
是否有“飄移點(diǎn)”?請(qǐng)說明理由;
(2)證明函數(shù)f(x)=x2+2x在(0,1)上有“飄移點(diǎn)”;
(3)若函數(shù)f(x)=lg(
a
x2+1
)在(0,+∞)上有“飄移點(diǎn)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,則f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某考察團(tuán)對(duì)全國10大城市職工的人均平均工資x與居民人均消費(fèi)y進(jìn)行統(tǒng)計(jì)調(diào)查,y與x具有相關(guān)關(guān)系,回歸方程
y
=0.6x+1.5 (單位:千元),若某城市居民的人均消費(fèi)額為7.5千元,估計(jì)該城市人均消費(fèi)額占人均工資收入的百分比為( 。
A、66%B、72.3%
C、75%D、83%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),其圖象是連續(xù)不斷的,如果存在非零常數(shù)λ(λ∈R),使得對(duì)任意的x∈R,都有f(x+λ)=λf(x),則稱y=f(x)為“倍增函數(shù)”,λ為“倍增系數(shù)”,下列說法中正確的序號(hào)是
 

①若函數(shù)y=f(x)是倍增系數(shù)λ=-2的“倍增函數(shù)”,則y=f(x)至少有1個(gè)零點(diǎn);
②函數(shù)f(x)=2x+1是“倍增函數(shù)”,且“倍增系數(shù)”λ=1;
③函數(shù)f(x)=logax(a>0且a≠1)不可能是“倍增函數(shù)”;
④函數(shù)f(x)=
e
-x
 
是“倍增函數(shù)”,且“倍增系數(shù)”λ∈(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x+sinx,若f(a)=3,則f(-a)的值( 。
A、aB、-aC、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|0<x≤5},B={x|x<-3,x>1}求:
(1)A∩B;
(2)A∪(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,
i3(i+1)
i-1
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案